МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕСИТЕТ)

	УТВЕРЖДАЮ
Проректор по учебн	ной и методической работе
_	Д.А. Зубцов
	20 августа 2016 г.

ΠΡΟΓΡΑΜΜΑ

по дисциплине: Теория и реализация языков

программирования

по направлению: 03.03.01 «Прикладные математика и физика»

факультет: ФУПМ

кафедра: математических основ управления

курс: 2 ceместр: 3

Трудоёмкость: вариативная часть – 3 зач. ед.

лекции – 30 часов Экзамен – 3 семестр

практические (семинарские)

занятия – 30 часов Диф. зачет – нет

лабораторные занятия – нет

Самостоятельная работа – 18 час.

ВСЕГО АУДИТОРНЫХ ЧАСОВ - 60

Программу составили: д.ф.-м.н. В. А. Серебряков, к.т.н. Д. Р. Гончар, ст. преп. А. А. Рубцов, к.ф.-м.н. С. П. Тарасов, ст. преп. К. Б. Теймуразов.

Программа принята на заседании кафедры математических основ управления 24 апреля 2016 года

Заведующий кафедрой

С. А. Гуз

- 1. Известные и перспективные направления эффективного применения теории формальных языков как математической дисциплины. Алфавиты, цепочки, языки и их представление. Формальное определение грамматики. Типы грамматик по Хомскому и их свойства. Связь машин Тьюринга и грамматик типа 0. Линейно-ограниченные автоматы и их связь с К3-грамматиками.
- 2. Лексический анализ. Регулярные языки (РЯ) и регулярные выражения (РВ). Конечные автоматы (КА). Детерминированные и недетерминированные КА (ДКА и НКА). Эквивалентность классов языков, определяемых КА, РВ и автоматными грамматиками (грамматики типа 3: леволинейные ЛЛ, праволинейные ПЛ). Свойства замкнутости РЯ. Лемма о накачке для РЯ. Теорема Майхилла-Нероуда и минимальные автоматы. Алгоритмы поиска подстрок и КА. Алгоритм Кнута-Мориса-Пратта (КМП-алгоритм). Линейность алгоритма КМП.

Алгоритмы по теме КА

- Построение ДКА по НКА.
- Построение НКА по РВ.
- Построение ДКА по РВ.
- Построение РВ по НКА.
- По РВ R проверить, что слово принадлежит L(R).
- Построить по языку L язык L^R .
- Построение произведения (конкатенации) РЯ, дополнение РЯ, пересечение РЯ.
- Построение минимального автомата по ДКА.
- КМП-алгоритм.
- Построение по НКА эквивалентных ЛЛ- и ПЛ-грамматик.
- Построение эквивалентного НКА по ЛЛ- и ПЛ-грамматике.
- Решение уравнений с регулярными коэффициентами.

- 3. Синтаксический анализ: КС-грамматики (КСГ). Преобразования КС-грамматик, приведённые грамматики. Канонические формы КС-грамматик (нормальная форма Хомского). Свойства замкнутости КС-языков (КСЯ), незамкнутость КСЯ относительно пересечения. Дерево вывода КСГ. Однозначность КС-грамматик. Однозначность праволинейной грамматики, построенной по ДКА. Лемма о накачке для КСЯ. Проверка принадлежности слова КСЯ КСГ (алгоритм Кока—Янгера—Касами).
- **4.** Синтаксический анализ: автоматы с магазинной памятью (МА). Детерминированные и недетерминированные МА. Обобщенные МА и их эквивалентность стандартным МА. Эквивалентность МА, распознающих по конечному состоянию (F-MA) и по опустошению магазина (N-MA). Эквивалентность КСГ и МА. Однозначность КСГ, построенной по детерминированному N-MA (без доказательства).

Алгоритмы по теме КСГ и МА

- Удаление недостижимых и бесполезных символов в КСГ. Удаление циклов.
- Удаление левой рекурсии в КСГ.
- Приведение КСГ к нормальной форме Хомского и нормальной форме Грейбах.
- Проверка принадлежности слова КСГ (алгоритм Кока–Янгера–Касами).
- Преобразование N-MA → F-MA.
- Преобразование F-MA \rightarrow N-MA.
- Преобразование КСГ в эквивалентный N-MA.
- Преобразование N-MA в эквивалентную КСГ (с доказательством корректности для N-MA с одним состоянием).
 - **5.** Дополнительные сведения из теории конечных автоматов. Минимизация числа состояний и эквивалентность детерминированного конечного автомата (ДКА).

- 6. Предсказывающий разбор *сверху вниз*. Алгоритм разбора *сверху вниз*. Функции *FIRST* и *FOLLOW*. Конструирование таблицы предсказывающего анализатора. LL(l)-грамматики. Удаление левой рекурсии. Левая факторизация. Рекурсивный спуск. LL(k)-грамматики. Разбор *снизу вверх* типа сдвигсвёртка. Основа. LR(l)-анализаторы. Конструирование LR(l)-таблицы. LR(l)-грамматики. Варианты LR-анализаторов. LR(k)-грамматики.
- 7. Элементы теории перевода. Синтаксически управляемый перевод. Атрибутные грамматики.

Литература

- 1. *Axo A.*, *Cemu P.*, *Ульман Дж*. Компиляторы. Принципы, технологии, инструменты. М., СПб., Киев: Вильямс, 2001.
- 2. *Мартыненко Б.К.* Языки и трансляции. СПб.: СПбГУ, 2004. Доступно по ссылке *http://trpl7.ru/t-books/Martin/Martinenko_FLT_Cont.htm*
- 3. Серебряков В. А., Галочкин М. П., Гончар Д. Р., Фуругян М. Г. Теория и реализация языков программирования: учебное пособие для студентов. М.: МЗ-Пресс, 2006. 352 с.
- 4. Хопкрофт Дж., Мотвани Р., Ульман Дж. Введение в теорию автоматов, языков и вычислений. М.: Вильямс, 2002.
- 5. Ахо А., Лам М., Сети Р., Ульман Дж. Компиляторы. Принципы, технологии и инструментарий. М., СПб., Киев: Вильямс, 2011. 1184 с.

Задание

Задачи, выделенные в дополнительный раздел, а также задачи, помеченные звёздочкой, являются дополнительными и необязательными. Контрольные вопросы являются полноценными задачами, хотя и выделены в отдельные блоки. Решение всех задач должно быть обосновано. Отдельные указания по необходимости обоснования в некторых задачах являются акцентированием и вовсе не означают, что в других задачах обоснование не требуется. Использование алгоритмов из курса (см. программу), считается обоснованием. При использовании алгоритма проверяющий должен иметь возможность проверить корректность протокола: решения в духе «автомат построен по алгоритму, но вот только ответ» не оцениваются.

Всё вышесказанное относится ко всем письменным работам курса.

Регулярные языки

Задача 1. Определим язык $L \subseteq \{a,b\}^*$ индуктивными правилами:

- 1) $\varepsilon, b, bb \in L;$
- 2) вместе с любым словом $x \in L$ в L также входят слова ax, bax, bbax;
- 3) никаких других слов в L нет.

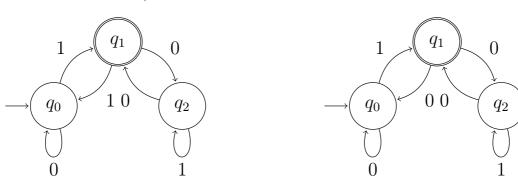
Язык $T\subseteq\{a,b\}^*$ состоит из всех слов, в которых нет трёх букв b подряд.

- 1. Докажите или опровергните, что L = T.
- 2. Запишите язык T в виде регулярного выражения.
- 3. Постройте конечный автомат, принимающий T. Докажите (по индукции), что построенный автомат принимает язык T.

 $^{^1}$ Если равенство неверно, то нужно явно указать слово, принадлежащее одному языку и не принадлежащее другому. Если равенство верно, то нужно провести доказательство по индукции в обе стороны: $L \subseteq T$ и $T \subseteq L$.

Задача 2. Верно ли, что

- 1) $\varepsilon \in \{a, aab, aba\}$?
- 2) $\varnothing \in \{a, aab, aba\}$?


Задача 3. Запишите регулярные выражения для языков:

- 1) $\{a^n \mid n > 0\} \times \{b^n \mid n \ge 0\};$
- 2) $\{a^{3n} \mid n > 0\} \cap \{a^{5n+1} \mid n \geqslant 0\}^*$.

Задача 4. Автоматы \mathcal{A} и \mathcal{B} заданы диаграммами. Выполните следующие задания.

Автомат \mathcal{A} :

Автомат \mathcal{B} :

Для каждого автомата ответьте на следующие вопросы (1-2).

- 1. Автомат задан через граф переходов. Запишите определение автомата в виде $(Q, \Sigma, \delta, q_0, F)$. Опишите элементы каждого множества.
- 2. Явлется ли автомат детерминированным?

Ответьте на вопросы.

- 3. Опишите последовательность конфигураций автомата \mathcal{A} при обработке слова w=011001. Верно ли, что $w\in L(\mathcal{A})$?
- 4. Принимает ли автомат \mathcal{B} слово v = 0101001?
- 5. Укажите по одному слову, принадлежащему $L(\mathcal{A}), L(\mathcal{B})$ и по одному слову, не принадлежащему $L(\mathcal{A}), L(\mathcal{B})$. Все 4 слова должны быть различными.

6

Задача 5. Выполните следующие задания.

- 1. Построить ДКА, принимающий язык L, состоящий из всех слов в алфавите $\{0,1\}$, которые содержат нечётное число нулей и чётное число единиц.
- 2. Построить эквивалентную леволинейную грамматику. Будет ли она однозначной?
- 3. Построить регулярное выражение для языка L^R .

Задача 6. Будут ли регулярными следующие языки?

1.
$$L = \{a^{2016n+5} \mid n = 0, 1, \} \cap \{a^{503k+29} \mid k = 401, 402, \ldots\} \subseteq \{a^*\}.$$

2.
$$L_2 = \{a^{200n^2+1} \mid n = 1000, 1001, \ldots\} \subseteq \{a^*\}.$$

3. Язык L_3 всех слов в алфавите $\{0,1\}$, которые представляют числа в двоичной записи, дающие остаток два при делении на три (слово читается со старших разрядов). Например, $001010\left(1010_2=10_{10}=3\times 3+1\right)\not\in L_3$, а $10001\left(10001_2=17_{10}=5\times 3+2\right)\in L_3$.

Задача 7. Постройте НКА, принимающий язык $L_3 = \{$ Множество слов в алфавите $\{a,b\}$, у которых третий от конца² символ равен «a» $\}$. Затем, используя алгоритм, постройте соответствующий полный ДКА.

Задача 8. Порождает ли регулярное выражение $(ab)^*(ba)^*$ тот же язык, что распознаёт ДКА $M = (\{A, B, C, D\}, \{a, b\}, \delta, A, \{A, D, E\})$, где функция переходов задана следующим образом:

$$\delta(A, a) = B, \ \delta(A, b) = C, \ \delta(B, b) = D, \ \delta(C, a) = E,$$

$$\delta(D, a) = B, \ \delta(D, b) = C, \ \delta(E, b) = C.$$

 $^{^2 \}Pi$ оследний символ слова равен первому символу с конца слова.

Задача 9. Покажите, что следующий язык удовлетворяет лемме о разрастании для регулярных языков, но сам регулярным не является:

$$L = \{a^k b^{2^i} \mid i, k \geqslant 0\} \cup \{b^j \mid j = 0, 1, \ldots\}.$$

Задача 10. Решите уравнения с регулярными коэффициентами. В каждом пункте нужно выполнить три задания:

- 1) найти частное решение;
- 2) найти решение, минимальное по включению;
- 3) найти все решения.

1.
$$X = ((110)^* + 111^*)X$$
.

2.
$$X = (00 + 01 + 10 + 11)X + (0 + 1 + \varepsilon)$$
.

3.
$$\begin{cases} Q_0 = 0Q_0 + 1Q_1 + \varepsilon, \\ Q_1 = 1Q_0 + 0Q_2, \\ Q_2 = 0Q_1 + 1Q_2. \end{cases}$$

Задача 11. Автомат \mathcal{A}_1 задан диаграммой. Выполните следующие задания. Достаточно выполнить хотя бы один из пунктов 2 или 3.

$$\mathcal{A}_1:$$

$$q_0 \qquad q_1 \qquad q_2 \qquad q_3$$

- 1. По диаграмме \mathcal{A}_1 постройте праволинейную грамматику G.
- 2. Запишите определяющую систему уравнений для G. Найдите её наименьшую неподвижную точку и вычислите регулярное выражение α_1 для $L(\mathcal{A}_1)$.

- 3. Определите регулярное выражение α_2 для $L(\mathcal{A}_1)$ с помощью индуктивного вычисления множеств R_{ij}^k .
- 4. Выберите какое-нибудь регулярное выражение α_1 или α_2 и постройте НКА \mathcal{A}_2 по регулярному выражению.
- 5. Выберите какой-нибудь НКА A_1 или A_2 и постройте ДКА D_1 .
- 6. Выберите какое-нибудь регулярное выражение α_1 или α_2 и постройте ДКА D_2 .
- 7. Выберите какой-нибудь ДКА D_1 или D_2 , дополните его, если нужно, до полного и постройте минимальный полный ДКА $\min \mathcal{A}$ для L. Для каждой пары состояний укажите соответствующие различающие их цепочки.
- 8*. По алгоритму КМП (Кнута-Мориса-Пратта) постройте автомат для L и сравните его с $\min \mathcal{A}$.

Контрольные вопросы

Несмотря на название раздела, все решения задач должны быть строго обоснованы.

Задача 12. Верно ли, что если пересечение языков L_1 , $L_2 \subseteq \{a,b\}^*$ содержит язык $F = \{a^nb^n \mid n \geqslant 1\} : F \subseteq L_1 \cap L_2$, то хотя бы один из языков L_1 и L_2 является нерегулярным?

Задача 13. Пусть $X_1, X_2, \ldots, X_n, \ldots$ бесконечное семейство регулярных языков.

- 1. Верно ли, что язык $X = \bigcup_{n=1}^{\infty} X_i$ является регулярным языком?
- 2. Верно ли, что язык $X = \bigcap_{n=1}^{\infty} X_i$ является регулярным языком?

Задача 14. К языку L_1 добавили конечный язык R и получили язык L $(L = L_1 \cup R)$. Язык L оказался регулярным. Верно ли, что язык L_1 мог быть нерегулярным?

Задача 15. Язык задан контекстно-зависимой грамматикой, которая не является контекстно-свободной. Может ли он быть регулярным?

Контекстно-свободные языки

Задача 16. Язык $L^{=}$ является языком всех слов с равным числом символов a и b.

- 1. Покажите индукцией по длине слова, что КС-грамматика с правилами $S \to SS \mid aSb \mid bSa \mid \varepsilon$ порождает язык $L^=$.
- 2. Грамматика называется линейной, если в правые части правил вывода входит не более одного нетерминала. Покажите, что язык $L^=$ не порождается никакой линейной КСГ.

Задача 17. Палиндромами называют слова, которые одинаково читаются слева направо и справа налево, например, «ротор».

- 1. Покажите, что язык палиндромов в произвольном алфавите является КС-языком.
- 2. Покажите, что дополнительный язык (язык всех непалиндромов) также является КС-языком.
- 3. Покажите, что дополнительный язык к языку $U = \{a^n b^n c^n, n = 0, 1, \ldots\}$ является КС-языком.

Задача 18. Являются ли следующие языки КС-языками?

1.
$$\{\{a,b\}^* \setminus ww \mid w \in \{a,b\}^*\}$$
.

2.
$$\{a^{3^n} \mid n > 0\}$$
.

³Другие доказательства, кроме индукции, не принимаются.

 $^{^4}$ Так как сам язык U не является KCЯ, то это означает, что в отличие от регулярных языков множество KCЯ не замкнуто относительно дополнения.

Задача 19. Выполните следующие задания.

- 1. Постройте магазинный автомат (MA), принимающий язык $L^{=}$ из задачи ${\bf 16}.$
- 2*. Постройте детерминированный МА, принимающий тот же язык, и приведите доказательство его корректности по индукции.

Задача 20. Язык Дика с двумя типами скобок D_2 порождается грамматикой

$$S \to SS \mid (S) \mid [S] \mid \varepsilon.$$

- 1. Постройте недетерминированный МП-автомат, распознающий язык D_2 .
- 2. Постройте детерминированный МП-автомат, распознающий язык D_2 , и приведите доказательство его корректности по индукции.

Задача 21. Для языка

$$L = \{w \mid w = xcy; x, y \in \{a, b\}^*; |x| = |y|\}$$

- 1) постройте КС-грамматику G, порождающую язык L;
- 2) постройте недетерминированный ${\rm MA},$ эквивалентный этой грамматике;
- 3) продемонстрируйте работу построенного MA на слове acab (проанализируйте все варианты поведения).

Задача 22. Заданы грамматика $G = \{ \{A, B, C, D, E, F, S\}, \{a, b\}, \{S \to AB \mid C, A \to aE \mid a, E \to aE \mid \varepsilon, B \to bB \mid Bb \mid b, C \to CD, F \to ab, D \to aba\}, S\}$ и магазинный автомат $M = (\{q_0\}, \{a, b\}, \{S, a, b, A, B\}, \{\delta(q_0, \varepsilon, S) = \{(q_0, AB)\}, \delta(q_0, \varepsilon, A) = \{(q_0, aA), (q_0, a)\}, \delta(q_0, \varepsilon, B) = \{(q_0, bB), (q_0, b)\}, \delta(q_0, a, a) = \{(q_0, \varepsilon)\}, \delta(q_0, b, b) = \{(q_0, \varepsilon)\}, q_0, S\},$ принимающий слова опустошением магазина.

1. Эквивалентны ли грамматика G и N-автомат M?

 $^{^5}$ Мы называем N-автоматом МП-автомат, допускающий по пустому стеку, а F-автоматом — МП-автомат, допускающий по принимающему состоянию.

- 2. Однозначна ли грамматика G? Если нет, то постройте эквивалентную ей однозначную грамматику.
- 3. Является ли автомат M детерминированным? Если нет, постройте эквивалентный ему детерминированный MA.

Задача 23. Определим языки $L_1 = \Sigma^* aab \Sigma^*, \ \Sigma = \{a,b\}, \ \text{и} \ L = \{w \mid w \in \overline{L_1}, \ |w|_a \geqslant |w|_b\}.$

- 1. Является ли дополнение языка L KC-языком?
- 2. Является ли дополнение языка L регулярным языком?

Задача 24. Язык L задан КСГ: $S \to aSa \mid aSb \mid bSa \mid bSb \mid a$.

- 1. Является ли L регулярным языком?
- 2. Является ли дополнение L регулярным языком?
- 3. Является ли L КС-языком?
- 4. Является ли дополнение L KC-языком?

Задача 25. Язык L задан грамматикой G:

$$S \to aSb \, | \, A \, | \, B \, | \, \varepsilon, \quad A \to aAa \, | \, \varepsilon, \quad B \to bBb \, | \, \varepsilon.$$

- 1. Является ли L регулярным языком?
- 2. Является ли дополнение L регулярным языком?
- 3. Является ли L KC-языком?
- 4. Является ли дополнение L KC-языком?

Контрольные вопросы

Задача 26. КС-грамматика называется левооднозначной, если каждое слово порождаемого ею языка имеет единственный левый вывод. Аналогично определяется правооднозначная грамматика. Можно ли построить пример левооднозначной, но не правооднозначной КС-грамматики?

Задача 27. Пусть L_1 – КС язык, не являющийся регулярным, а L_2 – не КС-язык. Может ли язык L_2L_1 быть регулярным языком? При положительном ответе привести пример.

Элементы синтаксического анализа

LL-анализ

Задача 28. Определить, являются ли LL(k)-грамматиками следующие грамматики. Если да, указать точное значение k:

- a) $S \to Ab$, $A \to Aa \mid a$;
- б) $S \to Ab$, $A \to aA \mid a$;
- в) $S \to aAb$, $A \to BB$, $B \to ab \mid A \mid \varepsilon$; г) $S \to aAb$, $A \to AaAb \mid \varepsilon$; д) $S \to aB$, $B \to aBB \mid b$.

Задача 29. Построить LL(1)-грамматику, эквивалентную грамматике из задачи 26(6), и управляющую таблицу для неё.

Задача 30. Написать для грамматики эквивалентную LL(1)-грамматику, построить LL(1)-анализатор и продемонстрировать его работу на слове baab.

$$S \rightarrow baaA \mid babA$$
 $A \rightarrow \varepsilon \mid Aa \mid Ab$

Задача 31*. Докажите, что язык $a^* \cup a^n b^n$ не является LL(1)-языком, то есть не существует LL(1)-грамматики, порождающей этот язык.

Задача 32. Язык L задан неоднозначной КС-грамматикой

$$G = \{ \{S\}, \{(,)\}, \{S \to (S) \mid SS \mid ()\}, S \}.$$

Написать LL(1)-грамматику для языка L.

Контрольные вопросы

Задача 33. Существует ли такая праволинейная (не обязательно регулярная праволинейная) грамматика, которая не является LL(1)-грамматикой?

Задача 34. В приведённой грамматике G есть правило $S \to AB$ и при этом $FIRST(A) \cap FIRST(B) = \varepsilon$. Верно ли, что грамматика G может быть LL(1)-грамматикой?

Задача 35. Пусть для некоторых двух нетерминалов A и B приведённой КС-грамматики G пересечение $\mathrm{FOLLOW}(A) \cap \mathrm{FOLLOW}(B)$ оказалось непустым. Верно ли, что грамматика G не является $\mathrm{LL}(1)$ -грамматикой?

 $^{^6\}Gamma$ рамматика называется приведённой, если в ней нет недостижимых и бесплодных символов. В литературе также встречаются неэквивалентные определения этого термина.

LR-анализ

Задача 36. Дана грамматика $G = \{ \{A,S\}, \{a,b,c\}, \{S \to Aa \mid b \mid \varepsilon; A \to Ab \mid c \}, S \}$. Является ли грамматика $G \operatorname{LR}(k)$ -грамматикой? При положительном ответе на вопрос найти минимальное k и построить соответствующий анализатор. Построить дерево разбора для цепочки cbba.

Задача 37. Дана грамматика $G = \{ \{A, S\}, \{a\}, \{S \to A; A \to aAa \mid a \}, S \}$. Является ли грамматика $G \ \mathrm{LR}(k)$ -грамматикой? При положительном ответе на вопрос найти минимальное k и построить соответствующий анализатор. Построить дерево разбора для цепочки aaaaa.

Задача 38. Дана грамматика $G = \{ \{A,S\}, \{a,b,c\}, \{S \to Aa \mid b; A \to Ab \mid c \}, S \}$. Является ли грамматика $G \operatorname{LR}(k)$ -грамматикой? При положительном ответе на вопрос найти минимальное k и построить соответствующий анализатор. Продемонстрировать работу анализатора на цепочке cbbab.

Задача 39. Зафиксируем КС-грамматику G и рассмотрим множество её LR(0)-ситуаций. Будем говорить, что между двумя ситуациями $\alpha.X\beta$ и $\alpha X.\beta$ определён переход по $X \in N \cup T$. Конечный автомат, в качестве состояний которого выступают LR(0)-ситуации, а переходы определены по правилу, указанному выше, называют LR(0)-автоматом или автоматом Kнута.

- 1. Выпишите все LR(0)-ситуации для грамматики G, заданной правилами $S \to aS \mid b$.
- 2. Постройте автомат Кнута для грамматики G.
- 3. Постройте LR(0)-анализатор для грамматики G. Сравните автомат Кнута с таблицей переходов LR(0)-анализатора для грамматики G.

Задача 40. Грамматика G задана правилами:

$$S \to Ab$$
, $A \to aAa$, $A \to B$, $B \to b$.

- 1. Построить LR(1) и LR(0)-анализаторы для грамматики G по алгоритму из курса.
- 2. Постройте LR(0)-анализатор по LR(1)-анализатору из пункта 1 следующим образом. Сотрите все аванцепочки и постройте управляющую таблицу LR(0)-анализатора по получившемуся автомату Кнута. Верно ли, что полученный LR(0)-анализатор является аналиазтором для грамматики G? То есть для любого слова, порождаемого G, анализатор строит корректный правый разбор, а слова, не порождаемые G, анализатор отвергает.
- 3. Покажите, что LR(0)-анализатор для грамматики G из пункта 1 можно построить путём применения следующей процедуры, схожей с процедурой минимизации ДКА, к LR(0)-автомату, полученному из LR(1)-анализатора в пункте 2.

В случае минимизации LR(0)-автомата, все состояния с операциями свёртки оказываются на первом шаге в разных группах (разных ящи-ках), если свёртки происходят по разным правилам; состояния с операциями сдвига находятся в одном ящике. Далее процедура минимизации LR(0)-автомата не отличается от процедуры минимизации JKA.

Контрольные вопросы

Задача 41. При построении LR(1)-анализатора для грамматики G в одном множестве оказались ситуации $[A \to .aA\alpha, b]$ и $[B \to \beta.a, a]$, где α, β некоторые цепочки из $(N \cup T)^*$. Может ли грамматика G оказаться LR(0)-грамматикой?

Атрибутные грамматики

Атрибутные грамматики являются исключительно важными для понимания роли всего изученного материала (теории) в процессе реализации компиляторов для языков программирования. Однако их изучение приходится на конец курса, поэтому мы приводим в этом разделе теоретический материал, подготовленный С.П. Тарасовым, для облегчения

изучения небольшой части этой значительной темы, которая входит в наш курс.

Об атрибутных грамматиках можно прочитать в книге В.А. Серебрякова. Они встречались в дополнительных вопросах на экзамене. Неформально, определение атрибутов для данной КС-грамматики G приписывает каждому выводу в G некоторое индуктивное вычисление. Поскольку индуктивное вычисление по выводу (дереву вывода) может идти как снизу вверх, так и сверху вниз, то технически правилам вывода G приписываются т.н. синтезируемые атрибуты, вычисляемые снизу вверх через атрибуты потомков и наследуемые атрибуты, вычисляемые сверху вниз через атрибуты предков.

Говоря формально, с каждым символом $X \in V$ связывается конечное множество атрибутов A(X), которое разбивается на два непересекающихся множества: множество синтезированных атрибутов $A_0(X)$ и множество унаследованных атрибутов $A_1(X)$. Множество $A_1(S)$ должно быть пустым (то есть начальный символ S не должен иметь унаследованных атрибутов). Аналогично, множество $A_0(X)$ пусто, если X — терминальный символ. Каждый атрибут α из множества A(X) имеет (возможно, бесконечное) множество значений $V\alpha$. Для каждого вхождения X в дерево вывода семантические правила позволяют определить одно значение из множества $V\alpha$ для соответствующего атрибута.

Пусть G состоит из m правил, и пусть p-е правило имеет вид $X_{p0} \to X_{p1}X_{p2}\dots X_{pn_p}$, где $n_p \geqslant 0$, $X_{p0} \in N$ и $X_{pj} \in V$ для $1 \leqslant j \leqslant n_p$. Семантическими правилами называются функции $F_{pj\alpha}$, определённые для всех $1 \leqslant p \leqslant m$, $0 \leqslant j \leqslant n_p$ и некоторых $\alpha \in A_0(X_{pj})$, если j=0 или $\alpha \in A_1(X_{pj})$, если j>0. Каждая такая функция представляет собой отображение из $V\alpha_{1\times}V\alpha_{2\times}\dots \times V\alpha_t$ в $V\alpha$ для некоторого $t=t(p,j,\alpha)\geqslant 0$, где все $\alpha_i=\alpha_i(p,j,\alpha)$ являются атрибутами некоторых Xpk_i при $0 \leqslant k_i=k_i(p,j,\alpha) \leqslant n_p, 1 \leqslant i \leqslant t$. Другими словами, каждое семантическое правило отображает значения некоторых атрибутов символов $X_{p0}, X_{p1}, \dots, X_{pn}$ и значение некоторого атрибута символа X_{pj} .

С одной стороны, задание атрибутов удобно для моделирования семантики языков программирования. Однако, это вычислительное средство является настолько мощным, что уже простейшие проверки корректности системы атрибутов практически трудно реализуемы (см. при-

 $^{^7}$ Далее идет заимствование из оригинальной статьи Д. Кнута, перевод которой приведён в книге В.А. Серебрякова

ложения **A** и **B** в книге В.А. Серебрякова). Это в значительной степени ограничивает их применение. Тем не менее, мне кажется, будет очень полезно ознакомиться со статьей Д. Кнута (приложение **A** в книге Серебрякова) и иметь в виду, что *незацикленность* является разрешимой, хотя и очень трудоемкой (экспоненциальной по входу) задачей.

Рассмотрим грамматику⁸

$$G = \{ \{S, L, B\}, \{0, 1\}, \{S \to L \mid L.L, L \to B \mid LB, B \to 0 \mid 1\}, S \}.$$

В грамматике G можно вывести произвольные двоичные числа (нетерминалы B (bit) и L (list) интерпретируются, соответственно, как δum и $nocnedosamenьность <math>\delta umos$). Рассмотрим два варианта $ampu\delta ymos$, позволяющих в процессе вывода вычислять десятичное значение выводимого числа.

Список атрибутов 1

- B имеет целочисленный атрибут "значение", обозначаемый v(B).
- L имеет целочисленные атрибуты " ∂ лина", обозначаемый l(B), и "значение", обозначаемый v(L).
- S имеет атрибут "*значение*", являющийся рациональным числом и обозначаемый v(N).

Семантические правила 1

$$B \to 0$$
 $v(B) = 0$
 $B \to 1$ $v(B) = 1$
 $L \to B$ $v(L) = v(B)$, $l(L) = 1$
 $L \to LB$ $v(L_1) = 2v(L_2) + v(B)$, $l(L_1) = l(L_2) + 1$
 $S \to L$ $v(S) = v(L)$
 $S \to L.L$ $v(S) = v(L_1) + v(L_2)/2^{l(L_2)}$

(Индексы в четвёртом и шестом правилах применяются для того, чтобы различать вхождения одноимённых нетерминалов.)

 $^{^8}$ Взята из уже цитированной статьи Д. Кнута, помещенной в виде приложения к книге В.А. Серебрякова.

Список атрибутов 2

- B имеет рациональный атрибут "значение", обозначаемый v(B), и целочисленный атрибут "масштаб", обозначаемый s(B).
- L имеет рациональный атрибут "значение", обозначаемый v(L), целочисленный атрибут "длина", обозначаемый l(L), и целочисленный атрибут "масштаб", обозначаемый s(L).
- N имеет рациональный атрибут "значение", обозначаемый v(N).

Семантические правила 2.

$$\begin{array}{lll} B \to 0 & v(B) = 0 \\ B \to 1 & v(B) = 2^{s(B)} \\ L \to B & v(L) = v(B), \quad s(B) = s(L), \\ & l(L) = 1 \\ L_1 \to L_2 B & v(L_1) = v(L_2) + v(B), \quad s(B) = s(L_1), \\ & s(L_2) = s(L_1) + 1, \quad l(L_1) = l(L_2) + 1 \\ S \to L & v(S) = v(L), \quad s(L) = 0 \\ S \to L_1.L_2 & v(S) = v(L_1) + v(L_2), \quad s(L_1) = 0, \\ & s(L_2) = -l(L_2) \end{array}$$

Здесь при записи семантических правил принято следующее соглашение. Правая часть каждого правила представляет собой определение левой части. Таким образом, s(B)=s(L) означает, что сначала должно быть вычислено s(L), а затем полученное значение следует присвоить s(B).

Задача 42.

- 1. Перечислите синтезируемые и наследуемые атрибуты для обоих систем семантических правил.
- 2–3. Для каждой из описанных выше систем атрибутов и семантических правил вычислите десятичное значение двоичного числа 100.001001.

Дополнительные задачи

В этот раздел входят задачи для подготовки к контрольным работам и экзаменам, а также задачи повышенной сложности для студентов, претендующих на высокие оценки. Задачи данного раздела не являются обязательными для прохождения процедуры сдачи задания, если только не входят в требования семинариста. Во всех письменных общекурсовых работах значение k в задачах на построение LR(k)-анализаторов не превосходит единицу.

Регулярные языки

Задача 43. Пусть X регулярный язык. Верно ли, что язык $\bigcap_{n=1}^{\infty} (\Sigma^* \setminus X)^n$ является регулярным?

Задача 44. Приведите пример бесконечного регулярного языка $X \subset \{a,b\}^*$, отличного от множества всех слов, такого что $X \cap (\Sigma^* \setminus X)^R = X$.

Задача 45. Найдите разбиения на минимальное число классов правоинвариантной (II/IIII) левоинвариантной) эквивалентности, которые индуцируют следующие языки.

- 1. Язык, порождаемый выражением $00(10+01)^*$.
- 2. Язык $\{a^{n^2} \mid n \ge 0\}$ в однобуквенном алфавите.

КС-языки

Задача 46. Язык L задан грамматикой G:

$$S \to bSa \mid AB \mid \varepsilon, \quad A \to bAb \mid b, \quad B \to aBa \mid \varepsilon.$$

Является ли язык L и его дополнение регулярным языком, KC-языком?

Задача 47. Являются ли следующие языки КС-языками?

- 1. $\{x \mid x \in \{c,b\}^*, |x|_c = |x|_b, \forall u, v : x = uv, |u| \neq 0, |v| \neq 0, |u|_c > |u|_b\}.$
- 2. $\{a^{3^n} \mid n > 0\}$.

Задача 48*. Пусть – МА. Построите МА B, принимающий все префиксы языка L(A), т.е. язык $L(B)=\{x\mid \exists y: xy\in L(A)\}$.

Задача 49. Для языка

$$L = \{ w \mid w = xc^{3k}y; x, y \in \{a, b\}^*; |xy|_a = 2n; \ n, k \geqslant 0 \}$$
 ($|xy|_a$ — число символов a в слове xy)

- 1) постройте КС-грамматику G, порождающую язык L;
- 2) постройте недетерминированный МА, эквивалентный этой грамматике;
- **3)** продемонстрируйте работу построенного MA на слове *accab* (проанализируйте все варианты поведения).

Задача 50. Заданы языки $L_1=\{a^nb^nc^m:n\geqslant 1, m\geqslant 0\},\ L=\{f^na^mb^m:n\geqslant 0, m\geqslant 0\}.$ Для языка $L_1\cup L_2$ построить однозначную КС-грамматику и детерминированный МП-автомат. Решение обосновать.

Элементы синтаксического анализа

Задача 51. Язык L задан неоднозначной КС-грамматикой:

$$G = \{ \{S\}, \{a, ., {}^{\wedge}, [,], (,)\}, \{S \rightarrow a \mid S.S \mid S[S] \mid S^{\wedge} \mid S(S)\}, S \}.$$

Написать LL(1)-грамматику для языка L.

Задача 52. Дана грамматика $G = \{ \{A, B, C, D, E, S\}, \{a, b\}, \{S \to AB, A \to a, B \to CD \mid aE, C \to ab, D \to bb, E \to bba \}, S \}.$ Является ли грамматика $G \operatorname{LR}(k)$ -грамматикой? При положительном ответе на вопрос найти минимальное k и построить соответствующий анализатор. Продемонстрировать работу анализатора на цепочке aabbb.

Задание составил

А.А. Рубцов, старший преподаватель

С методическими материалами по курсам кафедры МОУ можно ознакомиться на страницах:

```
http://www.mou.mipt.ru, http://trpl7.ru, http://lrk.umeta.ru, http://rubtsov.su.
```