Декабрьская контрольная по ТРЯП, решения и критерии

ФУПМ 2018

Разбалловка и общие положения

неуд	удовл	хорошо	ОТЛИЧНО
$0 \leqslant \Sigma \leqslant 13$	$14 \leqslant \Sigma \leqslant 19$	$20 \leqslant \Sigma \leqslant 28$	$29 \leqslant \Sigma \leqslant 42$
1: 0-7, 2: 8-13	3: 14-16, 4: 17-19	5: 20-22, 6: 23-25, 7: 26-28	8: 29-32, 9: 33-36, 10: 37-42

В случае дробной суммы баллов, перед выставлением оценки происходит арифметическое округление.

Приведённые ниже критерии оценивания выработанны с учётом типовых ошибок и определяют общую политику проверки, однако заведомо не могут покрыть все возможные случаи. При некритериальном случае, проверяющий оценивает решение исходя из здравого смысла и духа критериев. В случае несогласия с оценкой за работу, студент имеет право подать апелляцию.

Апелляцию нужно подать в письменном виде во время показа работы до 22:00 17.12.

Замечания, возникшие после показа работ можно направить письмом всем преподавателям курса (адреса сообщаются при желании подать таковые).

Внимание! подача апелляции может привести к полному пересмотру работы апелляционной комиссией, в результате чего оценка может как повыситься, так и понизиться.

Напоминаем положения, указанные в преамбуле к контрольной.

1. Ответы, включая правильные, при отсутствии решений оцениваются в 0 (ноль) баллов.

- 2. Объекты, полученные «методом внимательного вглядывания», без доказательства корректности построения оцениваются в 0 (ноль) баллов.
- 3. При формулировке вопроса «верно ли, что», в случае положительного ответа приведите доказательство, а в случае отрицательного контрпример. Верное рассуждение без контрпримера оценивается в половину задачи.

Блок основных задач

Задача 1(4). Постойте КС-грамматику или МП автомат для языка над алфавитом $\{a, b, \#\}$

1
$$\langle i \rangle$$
.
 $\{x_1 \# x_2 \# \dots \# x_n \mid x_i \in \{a, b\}^*, \exists i : x_i = x_{i+1}^R\}$

1 (ii).
$$\{a^k \# w \mid k > 0, w \in \{a, b\}^*, \exists u, v \in \{a, b\}^* : w = ua^k v\}$$

1 (iii).
$$\{x_1 \# x_2 \# \dots \# x_n \mid x_i \in \{a, b\}^*, \exists i : x_i = x_{i+1}^R \}$$

 $1 \langle iv \rangle$.

$$\{a^k \# w \mid k > 0, w \in \{a, b\}^*, \exists u, v \in \{a, b\}^* : w = ua^k v\}$$

Решение.

1 (і). Грамматика, порождающая данный язык:

$$S \to ABC$$

$$B \to aBa|bBb| \#$$

$$A \to AA' \# | \varepsilon$$

$$C \to \# A'C | \varepsilon$$

$$A' \to aA'|bA'| \varepsilon$$

Нетерминал B порождает слово вида $x_i \# x_i{}^R$, нетерминал A' порождает произвольное слово x_k , нетерминалы A и C приписывают эти произвольные слова к $x_i \# x_i{}^R$ соответственно слева и справа.

1 (ii). Грамматика, порождающая данный язык:

$$S \to aBaA$$
$$B \to aBa|\#A$$
$$A \to aA|bA|\varepsilon$$

- 1 (ііі). См. решение первого варианта
- $1 \langle iv \rangle$. См. решение второго варианта

- Построение искомого МП-автомата (или КС-грамматики) с минимальными аргументами обоснования, оцениваются в 2 балла. Несущественные ошибки, например, присутствие или отсутствие некоторых слов языка понижает оценку.
- Достаточно подробное обоснование корректности в обе стороны оценивается по одному баллу в каждую сторону.
- Замечание. Простое выписывание даже корректных КСГ или МП без обоснования оценивается в 0 баллов.

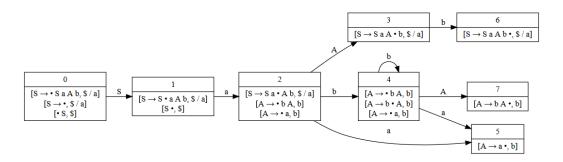


Рис. 1: Первый вариант. Множества LR(1)-ситуаций

Задача 2 (6). 2 (і). Является ли грамматика $G = \{\{A,S\}, \{a,b\}, \{S \to SaAb \mid \varepsilon, A \to bA \mid a\}, S\}$ LL(1) грамматикой? Является ли грамматика G LR(k) грамматикой? Указать наименьшее значение k, построить соответствующий правый анализатор.

- $2 \langle ii \rangle$. Является ли грамматика $G = \{\{A,S\}, \{a,b\}, \{S \to AaS \mid b,A \to Aa \mid b\}, S\}$ LL(1) грамматикой? Является ли грамматика G LR(k) грамматикой? Указать наименьшее значение k, построить соответствующий правый анализатор.
- $2 \langle \text{iii} \rangle$. Является ли грамматика $G = \{\{A,S\}, \{a,b\}, \{S \to ASb \mid \varepsilon, A \to Sa\}, S\}$ LL(1) грамматикой? Является ли грамматика G LR(k) грамматикой? Указать наименьшее значение k, построить соответствующий правый анализатор.
- $2 \langle \text{iv} \rangle$. Является ли грамматика $G = \{\{A,S\}, \{a,b\}, \{S \to Sa \mid Ab, A \to Sa \mid a\}, S\}$ LL(1) грамматикой? Является ли грамматика G LR(k) грамматикой? Указать наименьшее значение k, построить соответствующий правый анализатор.

Решение. Во всех вариантах грамматика не LL(1) потому что содержит левую рекурсию и не LR(0) потому что содержит различные "action"в таблице LR(1) анализатора.

- **2** (i).
- **2** (ii).

State	a	b	S	S	A
0	$reduce(S \rightarrow \epsilon)$		$reduce(S \rightarrow \epsilon)$	1	
1	shift(2)		accept		
2	shift(5)	shift(4)			3
3		shift(6)			
4	shift(5)	shift(4)			7
5		$reduce(A \rightarrow a)$			
6	$\mathtt{reduce}(S \to S \ \mathtt{a} \ A \ \mathtt{b})$		$reduce(S \to S \; a \; A \; b)$		
7		$reduce(A \to b \; A)$			

Рис. 2: Первый вариант. Таблица LR(1)-анализатора.

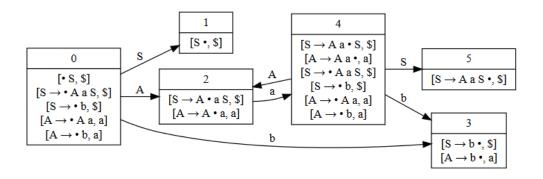


Рис. 3: Второй вариант. Множества LR(1)-ситуаций

State	a	b	s	S	A
0		shift(3)		1	2
1			accept		
2	shift(4)				
3	$reduce(A \rightarrow b)$		$reduce(S \rightarrow b)$		
4	$reduce(A \rightarrow A a)$	shift(3)		5	2
5			$reduce(S \rightarrow A \ a \ S)$		

Рис. 4: Второй вариант. Таблица LR(1)-анализатора.

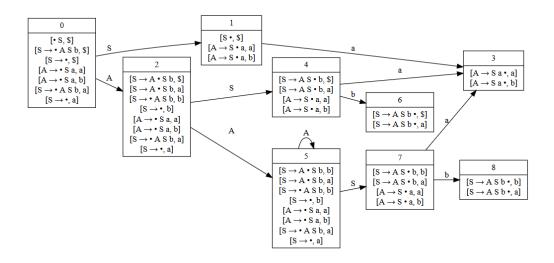


Рис. 5: Третий вариант. Множества LR(1)-ситуаций

State	b	a	S	S	A
0		$reduce(S \rightarrow \varepsilon)$	$reduce(S \rightarrow \varepsilon)$	1	2
1		shift(3)	accept		
2	$reduce(S \to \epsilon)$	$reduce(S \to \epsilon)$		4	5
3	$reduce(A \rightarrow S a)$	$\operatorname{reduce}(A \to S \mathbf{a})$			
4	shift(6)	shift(3)			
5	$reduce(S \to \epsilon)$	$reduce(S \to \epsilon)$		7	5
6		$reduce(S \rightarrow A S b)$	$reduce(S \rightarrow A S b)$		
7	shift(8)	shift(3)			
8	$reduce(S \rightarrow A S b)$	$reduce(S \rightarrow A S b)$			

Рис. 6: Третий вариант. Таблица LR(1)-анализатора.

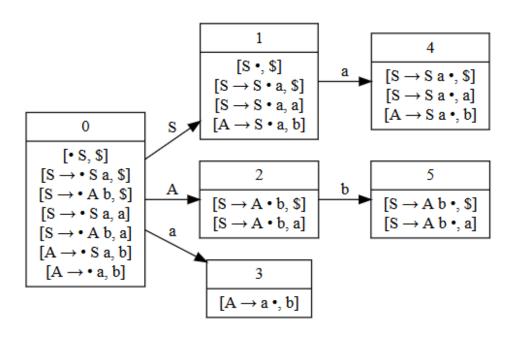


Рис. 7: Четвертый вариант. Множества LR(1)-ситуаций

State	a	b	S	S	A
0	shift(3)			1	2
1	shift(4)		accept		
2		shift(5)			
3		$reduce(A \rightarrow a)$			
4	$reduce(S \rightarrow S a)$	$\operatorname{reduce}(A \to S \mathbf{a})$	$reduce(S \rightarrow S a)$		
5	$reduce(S \rightarrow A b)$		$reduce(S \rightarrow A b)$		

Рис. 8: Четвертый вариант. Таблица LR(1)-анализатора.

- Проверка принадлежности LL(1) оценивается 1 балл.
- Построение множества LR(1)-ситуаций 2.5 балла (-0.5 балла за каждую мелкую ошибку).
- Построение управляющей таблицы LR(1)-анализатора 1.5 балла (или меньше, если ошибки в предыдущем пункте привели к существенному уменьшению количества множеств LR(1) ситуаций).
- Обоснование того, что КСГ не является LR(0)-грамматикой (по определению или прямым построением LR(0) анализатора или как следствие построения LR(1)-анализатора с неоднозначным столбцом Action -последнее было разрешено) 1 балл.
- Если при построение множества LR(1)- ситуаций допущены несущественные неточности, то последующие пункты (таблица и LR(0)) могут быть оценены, если они выполнены корректно.

Задача 3 (7). «Да» «HET» Является ли язык L над алфавитом $\{a,b,c,d\}$ КС-языком?

«Да» «HET» Является ли его дополнение, язык \overline{L} , КС-языком?

 $3\langle i\rangle$.

$$L = \{w : |w|_a \leqslant |w|_b \text{ и } |w|_c > |w|_d\}.$$

3 ⟨ii⟩.

$$L = \{w \colon |w|_a > |w|_b \text{ или } |w|_c \leqslant |w|_d\}.$$

3 ⟨iii⟩.

$$L = \{w \colon |w|_a < |w|_b \text{ и } |w|_c \geqslant |w|_d\}.$$

3 ⟨iv⟩.

$$L = \{w \colon |w|_a \geqslant |w|_b$$
 или $|w|_c < |w|_d\}.$

Решение. Во всех вариантах язык содержащий "или" является КСЯ как объединение заведомо КС языков.

- $3 \langle i \rangle$. Докажем, что язык $L = \{w \colon |w|_a \leqslant |w|_b \text{ и } |w|_c > |w|_d\}$. не является КСЯ, используя отрицание леммы о разрастании. $\forall n \in \mathbb{N} \exists w = a^n c^{n+1} b^n d^n \in L \colon |w| \geq n, \forall xuvwz = w, |uvw| \leq n, |uw| > 0 \exists i \colon xu^i vw^i z \not\in L$. Заметим, что слово uw не может содержать одновременно a и b, а также не может содержать одновременно c и d. Допустим, слово uw содержит a, тогда оно не может содержать b и в слове xu^2vw^2z условие $|w|_a \leqslant |w|_b$ нарушится, следовательно оно не будет принадлежать языку. Аналогично разбираются другие случаи.
- $3 \langle ii \rangle$. Решение аналогично решению для первого варианта, $w = a^{n+1}c^nb^nd^n$
- 3 $\langle \mbox{iii} \rangle$. Решение аналогично решению для первого варианта, $w=a^nc^{n+1}b^{n+1}d^{n+1}$
- $\mathbf{3} \langle \text{iv} \rangle$. Решение аналогично решению для первого варианта, $w = a^{n+1}c^nb^{n+1}d^{n+1}$

- Вариант с "или" оценивается из 3 баллов.
- Вариант с "и" оценивается из 4 баллов. При этом доказательство, использующее лемму о разрастании оценивается следующим образом.
 - 1. Для любого значения константы приведено корректное слово, "накачивание" которого может привести к противоречию 1 балл.
 - 2. В случае правильного выбора слова рассмотрены все возможные разбиения и для каждого разбиения приведено значение параметра накачки, приводящее к противоречию 3 балла (до 2 баллов, если рассмотрены не все разбиения).

3.

Задача 4(6). 4 $\langle i \rangle$. Ниже приведен автомат LR(0) анализатора:

	Action	Goto							
Ι	\$	S'	S	Α	В	С	b	а	\$
I_0	S		1	3	4	2	5		
I_1	R (S'->S)								
I 2	S		6	3	4	2	5		
I_3	S						7	8	
I ₄	R (A->B)								
I ₅	R (B->b)								
I ₆	R (S->cS)								
I ₇	R (S->Ab)								
I ₈	R (A->Aa)								

В приведенной ниже конфигурации LR анализатора в первой компоненте (содержимом магазина) опущены состояния автомата. В процессе разбора строки $z \in L(G)$ автомат оказался в конфигурации $\langle cccB, aab \rangle$. Требуется:

- 1. Восстановить состояния автомата в содержимом магазина.
- 2. Восстановить какую-либо из возможных строк $z \in L(G)$, разбор которой мог привести к этой конфигурации.
- 3. Продемонстрировать процесс разбора на этой строке. Решение обоснуйте.
- 4 $\langle ii \rangle$. Ниже приведен автомат LR(0) анализатора:

	Action	Goto						
Ι	\$	S'	S	Α	4	1	2	\$
I_0	S		1	2	3	4	5	
I_1	R (S'->S)							
I_2	S		6	2	3	4	5	
I_3	R (S->4)							
I ₄	S			7		4	5	
I ₅	R (A->2)							
I ₆	S			8		4	5	
I 7	R (A->1A)							
I ₈	R (S->ASA)							

В приведенной ниже конфигурации LR анализатора в первой компоненте (содержимом магазина) опущены состояния автомата. В процессе разбора строки $z\in L(G)$ автомат оказался в конфигурации $\langle AAS, 2112\rangle$. Требуется:

- 1. Восстановить состояния автомата в содержимом магазина.
- 2. Восстановить какую-либо из возможных строк $z \in L(G)$, разбор которой мог привести к этой конфигурации.
- 3. Продемонстрировать процесс разбора на этой строке. Решение обоснуйте.
- 4 (iii). Ниже приведен автомат LR(0) анализатора:

	Action	Goto									
Ι	\$	S'	S	Α	В	С	1	2	3	4	\$
I_0	S		1	2				3			
I_1	R (S'->S)										
I ₂	S						4	5			
I ₃	S				6				7		
I ₄	S				8				7		
I ₅	S			10		9		3		11	
I ₆	R (A->2B)										
I ₇	S			10		12		3		11	
I ₈	R (S->A1B)										
I ₉	R (S->A2C)										
I ₁₀	R (C->A)										
I ₁₁	R (C->4)										
I ₁₂	R (B->3C)										

В приведенной ниже конфигурации LR анализатора в первой компоненте (содержимом магазина) опущены состояния автомата. В процессе разбора строки $z \in L(G)$ автомат оказался в конфигурации $\langle cA, 13234 \rangle$. Требуется:

- 1. Восстановить состояния автомата в содержимом магазина.
- 2. Восстановить какую-либо из возможных строк $z \in L(G)$, разбор которой мог привести к этой конфигурации.
- 3. Продемонстрировать процесс разбора на этой строке. Решение обоснуйте.
- 4 (iv). Ниже приведен автомат LR(1) анализатора (запись $A \to$ обозначает правило $A \to \varepsilon$):

		Acti	on					G	oto)				
Ι	а	\$	+	*	S'	S	Т	Q	F	W	+	а	*	\$
Io	s					1	2		3			4		
I_1		R (S'->S)												
I ₂		R (Q->)	S					5			6			
I ₃		R (W->)	R (W->)	S						7			8	
I ₄		R (F->a)	R (F->a)	R (F->a)										
I ₅		R (S->TQ)												
I ₆	s						9		3			4		
I ₇		R (T->FW)	R (T->FW)											
I ₈	s								10			4		
I ₉		R (Q->)	S					11			6			
I ₁₀		R (W->)	R (W->)	S						12			8	
I ₁₁		R (Q->+TQ)												
I ₁₂		R (W->*FW)	R (W->*FW)											

В приведенной ниже конфигурации LR анализатора в первой компоненте (содержимом магазина) опущены состояния автомата. В процессе разбора строки $z \in L(G)$ автомат оказался в конфигурации $\langle cF*FW, +a+a \rangle$. Требуется:

- 1. Восстановить состояния автомата в содержимом магазина.
- 2. Восстановить какую-либо из возможных строк $z \in L(G)$, разбор которой мог привести к этой конфигурации.
- 3. Продемонстрировать процесс разбора на этой строке. Решение обоснуйте.

Решение.

Стэк	Слово	Действие
I ₀	cccbaab\$	S
I ₀ cI ₂	ccbaab\$	s
I ₀ cI ₂ cI ₂	cbaab\$	S
I ₀ cI ₂ cI ₂ cI ₂	baab\$	S
I ₀ cI ₂ cI ₂ cI ₂ bI ₅	aab\$	B->b
I ₀ cI ₂ cI ₂ cI ₂ BI ₄	aab\$	A->B
I ₀ cI ₂ cI ₂ cI ₂ AI ₃	aab\$	s
$I_0cI_2cI_2cI_2AI_3aI_8$	ab\$	A->Aa
I ₀ cI ₂ cI ₂ cI ₂ AI ₃	ab\$	S
$I_0cI_2cI_2cI_2AI_3aI_8$	b\$	A->Aa
I ₀ cI ₂ cI ₂ cI ₂ AI ₃	b\$	S
$I_0cI_2cI_2cI_2AI_3bI_7$	\$	S->Ab
I ₀ cI ₂ cI ₂ cI ₂ SI ₆	\$	S->cS
I ₀ cI ₂ cI ₂ SI ₆	\$	S->cS
I ₀ cI ₂ SI ₆	\$	S->cS
I_0SI_1	\$	S'->S
I ₀ S'		Слово принято

 $4\langle i \rangle$.

Стэк	Слово	Действие
I ₀	222422112\$	S
I ₀ 2I ₅	22422112\$	A->2
I ₀ AI ₂	22422112\$	S
I ₀ AI ₂ 2I ₅	2422112\$	A->2
$I_0AI_2AI_2$	2422112\$	S
$I_0AI_2AI_22I_5$	422112\$	A->2
$I_0AI_2AI_2AI_2$	422112\$	S
$I_0AI_2AI_2AI_24I_3$	22112\$	S->4
I ₀ AI ₂ AI ₂ AI ₂ SI ₆	22112\$	S
$I_0AI_2AI_2AI_2SI_62I_5$	2112\$	A->2
$I_0AI_2AI_2AI_2SI_6AI_8$	2112\$	S->ASA
I ₀ AI ₂ AI ₂ SI ₆	2112\$	S
I ₀ AI ₂ AI ₂ SI ₆ 2I ₅	112\$	A->2
I ₀ AI ₂ AI ₂ SI ₆ AI ₈	112\$	S->ASA
I ₀ AI ₂ SI ₆	112\$	S
I ₀ AI ₂ SI ₆ 1I ₄	12\$	S
I ₀ AI ₂ SI ₆ 1I ₄ 1I ₄	2\$	S
$I_0AI_2SI_61I_41I_42I_5$	\$	A->2
$I_0AI_2SI_61I_41I_4AI_7$	\$	A->1A
I ₀ AI ₂ SI ₆ 1I ₄ AI ₇	\$	A->1A
I ₀ AI ₂ SI ₆ AI ₈	\$	S->ASA
I ₀ SI ₁	\$	S'->S
I ₀ S'		Слово принято

 $4\langle ii \rangle$.

	Стэк	Слово	Действие
	I ₀	23413234\$	S
	$I_0 2I_3$	3413234\$	S
	I ₀ 2I ₃ 3I ₇	413234\$	S
	I ₀ 2I ₃ 3I ₇ 4I ₁₁	13234\$	C->4
	I ₀ 2I ₃ 3I ₇ CI ₁₂	13234\$	B->3C
	I ₀ 2I ₃ BI ₆	13234\$	A->2B
	I ₀ AI ₂	13234\$	S
	I ₀ AI ₂ 1I ₄	3234\$	S
	I ₀ AI ₂ 1I ₄ 3I ₇	234\$	S
	I ₀ AI ₂ 1I ₄ 3I ₇ 2I ₃	34\$	S
	I ₀ AI ₂ 1I ₄ 3I ₇ 2I ₃ 3I ₇	4\$	S
	$I_0AI_21I_43I_72I_33I_74I_{11}$	\$	C->4
	I ₀ AI ₂ 1I ₄ 3I ₇ 2I ₃ 3I ₇ CI ₁₂	\$	B->3C
	I ₀ AI ₂ 1I ₄ 3I ₇ 2I ₃ BI ₆	\$	A->2B
	I ₀ AI ₂ 1I ₄ 3I ₇ AI ₁₀	\$	C->A
	I ₀ AI ₂ 1I ₄ 3I ₇ CI ₁₂	\$	B->3C
	I ₀ AI ₂ 1I ₄ BI ₈	\$	S->A1B
	I ₀ SI ₁	\$	S'->S
4 ⟨iii⟩.	I ₀ S'		Слово принято

Стэк	Слово	Действие
I ₀	a*a+a+a\$	S
I ₀ aI ₄	*a+a+a\$	F->a
I ₀ FI ₃	*a+a+a\$	S
$I_0FI_3*I_8$	a+a+a\$	S
I ₀ FI ₃ *I ₈ aI ₄	+a+a\$	F->a
I ₀ FI ₃ *I ₈ FI ₁₀	+a+a\$	W->
$I_0FI_3*I_8FI_{10}WI_{12}$	+a+a\$	W->*FW
I ₀ FI ₃ WI ₇	+a+a\$	T->FW
I ₀ TI ₂	+a+a\$	S
$I_0TI_2+I_6$	a+a\$	S
I ₀ TI ₂ +I ₆ aI ₄	+a\$	F->a
$I_0TI_2+I_6FI_3$	+a\$	W->
I ₀ TI ₂ +I ₆ FI ₃ WI ₇	+a\$	T->FW
$I_0TI_2+I_6TI_9$	+a\$	S
$I_0TI_2+I_6TI_9+I_6$	a\$	S
$I_0TI_2+I_6TI_9+I_6aI_4$	\$	F->a
$I_0TI_2+I_6TI_9+I_6FI_3$	\$	W->
$I_0TI_2+I_6TI_9+I_6FI_3WI_7$	\$	T->FW
$I_0TI_2+I_6TI_9+I_6TI_9$	\$	Q->
$I_0TI_2+I_6TI_9+I_6TI_9QI_{11}$	\$	Q->+TQ
$I_0TI_2+I_6TI_9QI_{11}$	\$	Q->+TQ
$I_0TI_2QI_5$	\$	S->TQ
I_0SI_1	\$	S'->S
I ₀ S'		Слово принято

 $4 \langle iv \rangle$.

- ullet Ответ на первый вопрос 1.5 балла.
- ullet Ответ на второй вопрос 1.5 балла.
- ullet Ответ на третий вопрос 3 балла.
- Замечание. Ответ на второй вопрос оценивается, только если приведены какие-то аргументы для его обоснования. В частности, обоснованием является ответ на третий вопрос.

Задача 5 (6). Обозначим через bin(n) двоичную запись числа n (без ведущих нулей). Является ли язык L КС-языком?

$$\{ bin(n) \# bin(3n)^R \mid n \geqslant 0 \}$$

 $5\langle i \rangle$. $5\langle ii \rangle$. $5\langle iii \rangle$. $5\langle iv \rangle$.

Решение.

То, что язык КС, можно доказать построением следующего МП-автомата:

- Запись bin(a) в стек: $\delta(q_0,1,Z_0)=(q_0,1Z_0),\,\delta(q_0,a,Z)=(q_0,aZ),$ где $Z\in\{0,1\},\,a\in\{0,1\}.$
- Переход в считающее состояние $\delta(q_0, \#, Z) = (q_c, Z), Z \in \{0, 1\}.$
- Поскольку 3n = n + 2n, будем вычислять 3n с конца. Начиная с этого момента при помощи состояний $q_{i,j}$ автомат будет подсчитывать сумму n и 2n. То, с чем складывать число из стека на следующем шаге (это 0 или 1) записываем в i, переходит ли единица с предыдущего разряда записываем в j. Тогда:
 - $-\delta(q_c,0,0)=(q_{0,0},\varepsilon),\ \delta(q_c,1,1)=(q_{1,0},\varepsilon).$ Подсчет последнего разряда из bin(3n) и если он совпадает со считанным удалить из стека и перейти к следующему символу.
 - Сложение с 0 без переходящего разряда $\delta(q_{0,0},0,0)=(q_{0,0},\varepsilon),$ $\delta(q_{0,0},1,1)=(q_{1,0},\varepsilon).$
 - Сложение с 0 и переходящим разрядом $\delta(q_{0,1},0,1)=(q_{1,1},\varepsilon),$ $\delta(q_{0,1},1,0)=(q_{0,0},\varepsilon)$
 - Сложение с 1 без переходящего разряда $\delta(q_{1,0},0,1)=(q_{1,1},\varepsilon),$ $\delta(q_{1,0},1,0)=(q_{0,0},\varepsilon).$
 - Сложение с 1 и переходящим разрядом $\delta(q_{1,1},0,0)=(q_{0,1},\varepsilon),$ $\delta(q_{1,1},1,1)=(q_{1,1},\varepsilon).$
 - Когда слово из стека уже извлечено, последним извлекли 1, дальше рассматривается 1 или 2 старших разряда $\delta(q_{1,0},1,Z_0)=(q_f,\varepsilon), \, \delta(q_{1,1},0,Z_0)=(q_l,Z_1), \, \delta(q_l,1,Z_1)=(q_f,\varepsilon)$

$$F = \{q_f\}, \Gamma = \{0, 1, Z_0, Z_1\}, \Sigma = \{0, 1, \#\}, Q = \{q_0, q_c, q_l, q_f, q_{0,0}, q_{1,0}, q_{0,1}, q_{1,1}\}$$

- Попытки опровергнуть принадлежность языка классу КСЯ оцениваются в 0 баллов.
- Должно быть приведено достаточно подробное обоснование принадлежности языка классу КСЯ. Например, достаточно подробное описание МП-автомата.

Вопросы и мини задачи

- **Задача 6** (1). «Да» «НЕТ» **6** (і). Пересечение КС-языков P и Q язык $L=P\cap Q$, является КС-языком. Следует ли отсюда, что хотя бы один из языков P и Q регулярный язык.
- 6 (іі). Существуют ли такой регулярный язык P и КС-язык Q, что их пересечение язык $L=P\cap Q$, не КС-язык.
- **6** (iii). Пересечение КС-языков P и Q—язык $L=P\cap Q$, является КС-языком. Следует ли отсюда, что хотя бы один из языков P и Q—регулярный язык.
- $\mathbf{6}$ (iv). Пересечение КС-языков P и Q—язык $L=P\cap Q$, является регулярных языком. Следует ли отсюда, что хотя бы один из языков P и Q—регулярный язык.

Решение.

- **6** (i). Her: $P = Q = \{a^n b^n | n \in \mathbb{N}\}$
- 6 (ii). Нет, пересечение КС-языка и регулярного языка КС-язык. Пусть регулярный язык задан своим ДКА, а КС-язык своим МП-автоматом с допуском по допускающему состоянию. Построим прямое произведение этих автоматов так же, как строилось прямое произведение для двух ДКА.
- **6** (iii). Совпадает с (1).
- **6** (iv). Нет, например языки $P=\{a^nb^n|n\in\mathbb{N}\cup\{0\}\}$ и $Q=\{c^nd^n|n\in\mathbb{N}\cup\{0\}\}$ пересекаются по ε . Язык $\{\varepsilon\}$ регулярный, а P и Q нерегулярные.

• Косвенные аргументы, типа отсутствия явных контрпримеров в вариантах с отрицательным ответом, могут привести к понижению оценки.

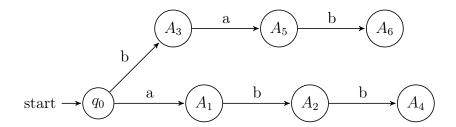


Рис. 9: LZW-автомат для первого варианта

 ${f 3}$ адача ${f 7}$ (2). Постройте LZW-автомат и SLG G_w для слова w=

 $7 \langle i \rangle$. aabbabbabab.

7 (ii). abbaababaabab.

7 (iii). bbaabaaababa.

 $7 \langle iv \rangle$. baabbabababa.

Решение.

7 (i). SLG-грамматика:

$$S \rightarrow A_1 A_2 A_3 A_4 A_5 A_6$$

$$A_1 \rightarrow a$$

$$A_3 \rightarrow b$$

$$A_2 \rightarrow A_1 b$$

$$A_4 \rightarrow A_2 b$$

$$A_5 \rightarrow A_3 a$$

$$A_6 \rightarrow A_5 b$$

7 (ii).

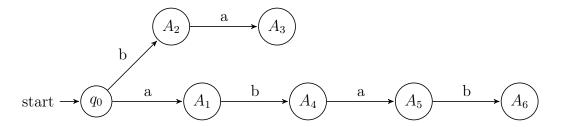


Рис. 10: LZW-автомат для второго варианта

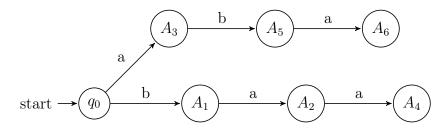


Рис. 11: LZW-автомат для третьего варианта

SLG-грамматика:

$$S \rightarrow A_1 A_2 A_3 A_4 A_5 A_6$$

$$A_1 \rightarrow a$$

$$A_2 \rightarrow b$$

$$A_3 \rightarrow A_2 a$$

$$A_4 \rightarrow A_1 b$$

$$A_5 \rightarrow A_4 a$$

$$A_6 \rightarrow A_5 b$$

 $7 \langle iii \rangle$.

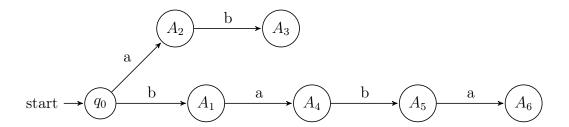


Рис. 12: LZW-автомат для четвертого варианта

SLG-грамматика:

$$S \rightarrow A_1 A_2 A_3 A_4 A_5 A_6$$

$$A_1 \rightarrow b$$

$$A_3 \rightarrow a$$

$$A_2 \rightarrow A_1 a$$

$$A_4 \rightarrow A_2 a$$

$$A_5 \rightarrow A_3 b$$

$$A_6 \rightarrow A_5 a$$

$7 \langle iv \rangle$.

SLG-грамматика:

$$S \rightarrow A_1 A_2 A_3 A_4 A_5 A_6$$

$$A_1 \rightarrow b$$

$$A_2 \rightarrow a$$

$$A_3 \rightarrow A_2 b$$

$$A_4 \rightarrow A_1 a$$

$$A_5 \rightarrow A_4 b$$

$$A_6 \rightarrow A_5 a$$

- Каждый пункт задачи оценивается в 1 балл.
- Каждая мелкая ошибка оценивается в -0.5 балла (вплоть до 0 баллов).

Задача 8 (4). Постройте LL(1)-грамматику для языка

- **8** (i). $\{a^n b^k \mid 0 \le n < k\}$.
- $8 \langle ii \rangle$. $\{a^n b^k c^n \mid n, k \geqslant 0\}$.
- $8 \langle \text{iii} \rangle$. $\{b^n a^k \mid 0 \leqslant n < k\}$.
- $8 \langle iv \rangle$. $\{b^n c^k a^n \mid n, k \geqslant 0\}$.

Решение.

8 (і). Искомая грамматика:

$$S \to AbB$$

$$B \to bB|\varepsilon$$

$$A \to aAb|\varepsilon$$

8 (іі). Искомая грамматика:

$$S \to aSc|B$$

$$B \to bB|\varepsilon$$

8 (ііі). Искомая грамматика:

$$S \to BaA$$

$$A \to aA|\varepsilon$$

$$B \to bBa|\varepsilon$$

 $8 \langle iv \rangle$. Искомая грамматика:

$$S \to bSa|C$$

$$C \to cC|\varepsilon$$

- Если построенная КСГ **не является** LL(1) 0 баллов.
- Если построенная КСГ **является LL(1)** и приведено минимальное обоснование корректности 1.5 балла. В отдельных очевидных случаях при отсутствии проверки корректности этот пункт оценивается из 0.5 баллов.
- Если обоснование корректности построенной грамматики LL(1)-грамматики приведено достаточно подробно +1 балл.
- ullet Доказательство принадлежности классу $\mathrm{LL}(1)-1.5$ балла.
- Если построена некорректная LL(1)-грамматика, то обоснование принадлежности классу LL(1) может быть оценено по ситуации из 1 балла.

- Задача 9(2). 9 (і). Приведите пример нерегулярного КС-языка, множество префиксов слов которого образуют регулярный язык.
- 9 (ii). Приведите пример нерегулярного КС-языка, множество суффиксов слов которого образуют регулярный язык.
- 9 (ііі). Приведите пример нерегулярного КС-языка, множество префиксов слов которого образуют регулярный язык.
- $9 \, \langle \mathrm{iv} \rangle$. Приведите пример нерегулярного КС-языка, множество подслов слов которого образуют регулярный язык.

Решение.

- $9 \langle i \rangle$. Язык $L = \{a^n b^m | m \geqslant n, \quad n, m \in \mathbb{N}\}$ не является регулярным по лемме о накачке. Для заданного k рассмотрим слово $a^k b^k$. Тогда из $(a^k b^k = uvw) \vee (|uv| \leqslant k) \vee (|v| \geqslant 1)$ следует, что $v = a^t$. Но тогда $uv^2w = a^{k+t}b^k$, $t \geqslant 1$, а значит $uv^2w \not\in L$. Язык префиксов a^*b^* является регулярным.
- 9 (ii). Язык $L = \{a^nb^m|m\leqslant n, n,m\in\mathbb{N}\}$ не является регулярным по лемме о накачке. Для заданного k рассмотрим слово a^kb^k . Тогда из $(a^kb^k=uvw)\vee(|uv|\leqslant k)\vee(|v|\geqslant 1)$ следует, что $v=a^t$. Но тогда $uv^0w=a^{k-t}b^k$, $t\geqslant 1$, а значит $uv^0w\not\in L$. Язык суффиксов a^*b^* является регулярным.
- 9 $\langle \text{iii} \rangle$. Язык $L = \{a^nb^m | m \geqslant n, \quad n,m \in \mathbb{N}\}$ не является регулярным по лемме о накачке. Для заданного k рассмотрим слово a^kb^k . Тогда из $(a^kb^k = uvw) \vee (|uv| \leqslant k) \vee (|v| \geqslant 1)$ следует, что $v = a^t$. Но тогда $uv^2w = a^{k+t}b^k$, $t \geqslant 1$, а значит $uv^2w \not\in L$. Язык префиксов a^*b^* является регулярным.
- 9 (iv). Подслова нерегулярного КС языка $\{a^nb^n|n\in\mathbb{N}\cup\{0\}\}$ образуют регулярный язык a^*b^*

• Пока без комментариев

Задача 10(3). «Да» «HET» **10** $\langle i \rangle$. L-KC-язык. Следует ли отсюда, что подмножество его палиндромов, т.е. язык $L \cap \mathsf{PAL}$, где $\mathsf{PAL} = \{w \mid w = w^R\}$, является KC-языком?

10 $\langle ii \rangle$. L-KC-язык. Следует ли отсюда, что подмножество его палиндромов, т.е. язык $L \cap \mathsf{PAL}$, где $\mathsf{PAL} = \{ w \mid w = w^R \}$, является KC-языком?

10 (iii). L — KC-язык. Следует ли отсюда, что подмножество его палиндромов, т.е. язык $L \cap \mathsf{PAL}$, где $\mathsf{PAL} = \{ w \mid w = w^R \}$, является KC-языком?

10 (iv). L — KC-язык. Следует ли отсюда, что подмножество его палиндромов, т.е. язык $L \cap \mathsf{PAL}$, где $\mathsf{PAL} = \{ w \mid w = w^R \}$, является KC-языком?

Решение.

Язык $L=\{a^nb^na^k|n,k\in\mathbb{N}\}$ является КС, поскольку порождается грамматикой $G=\{N,T,P,S\}$:

- $N = \{S, C, D\}$
- $T = \{a, b\}$
- $P = \{S \to CD, C \to aCb, C \to ab, D \to aD, D \to a\}$

Язык $L \cap \mathsf{PAL} = \{a^nb^na^n | n, k \in \mathbb{N}\}$ не является КС. Назовем префикс a^n слова $a^nb^na^n$ первой третью, подслово b^n второй третью, а суффикс a^n последней третью. Доказательство по лемме о накачке: для заданной константы k рассмотрим слово $a^kb^kc^k$. Поскольку $|xwy| \leqslant k$, подслово xwy содержится в первой и второй или второй и последней третях. В обоих случаях $ux^2wy^2z \not\in L \cap \mathsf{PAL}$, поскольку нарушает равенство количества букв в третях или не является словом вида $a^mb^ta^k$.

• При общем правильном подходе к решению отсутствие обоснования непринадлежности языков типа $\{a^nb^{2n}a^n\}$ классу КСЯ не влечет снижения оценки.