Декабрьская контрольная по ТРЯП указания, решения и критерии ФПМИ 2022

Разбалловка и общие положения

неуд	удовл	хорошо	отлично		
$0 \leqslant \Sigma < 16$	$16 \leqslant \Sigma < 24$	$24 \leqslant \Sigma < 33$	$33 \leqslant \Sigma \leqslant 44$		
1: [2, 9), 2: [9, 16)	3: [16, 20), 4: [20, 24)	5: [24, 27), 6: [27, 30), 7: [30, 33)	8: [33, 36) 9: [36, 39), 10: [39, 44]		

Приведённые ниже критерии оценивания выработанны с учётом типовых ошибок и определяют общую политику проверки, однако заведомо не могут покрыть всевозможные случаи. При некритериальном случае, проверяющий оценивает решение исходя из здравого смысла и духа критериев.

Напоминаем положения, указанные в преамбуле к контрольной.

- 1. Ответы, включая правильные, при отсутствии решений оцениваются в 0 (ноль) баллов.
- 2. Объекты, полученные «методом внимательного вглядывания», без доказательства корректности построения оцениваются в 0 (ноль) баллов.
- 3. При формулировке вопроса «верно ли, что», в случае положительного ответа приведите доказательство, а в случае отрицательного контрпример. Верное рассуждение без контрпримера оценивается в половину задачи.
- 4. Без обоснований можно использовать факты из программы курса, а также доказанные на лекции.
- 5. Время написания этой части работы 1:20. Далее будет перерыв. Выходить во время написания частей контрольной нельзя

Критерии проверки и некоторые ответы, указания и решения

Тестовые задачи

Выберите все верные варианты ответов и только их. Обоснование не требуется

1 (4). В каждом пункте укажите \Rightarrow , \Leftarrow , \iff (в случае, если можно поставить и \Rightarrow , и \Leftarrow) или оставьте поле пустым (во всех прочих случаях). Алфавит $\{a,b\}$ во всех пунктах. Под грамматикой в этой задаче понимается грамматика Хомского произвольного типа.

- 2. Язык L распознаётся каким-то суффиксным автоматом \Longrightarrow Язык L порождается какой-то LL(1)-грамматикой.
- 3. Непустой язык L распознаётся каким-то МП-автоматом Непустой язык L порождается какой-то неоднозначной КС-грамматикой.
- 4. Грамматика G порождает КС-язык, не являющийся регулярным Γ грамматика G является КС-грамматикой, но не является регулярной праволинейной грамматикой.

Критерии.

- +1 Правильный ответ на вопрос
- **2**(2). Ниже приведена частично заполненная таблица $\mathrm{LL}(1)$ -анализатора для грамматики G, заданной правилами

$$\begin{split} S &\to T \mid U \\ U &\to fTU \mid \varepsilon \\ T &\to FE \\ E &\to cFE \mid \varepsilon \\ F &\to d \mid aSb \end{split}$$

При этом каждый псевдоним P_i обозначает одно и только одно правило, а пустая клетка может означать как ошибку анализатора, так и пропущенное правило

	a	b	c	d	f	\$
S	P_1	P_2		P_1		P_2 P_3
U		P_3				P_3
Т						
E		P_4			P_4	P_4
F						

1. Сопоставьте псевдонимы правилам.

$$P_1 = egin{bmatrix} S o T \ P_2 = egin{bmatrix} S o U \ P_3 = egin{bmatrix} U o arepsilon \ P_4 = egin{bmatrix} E o arepsilon \ P_4 = egn{bmatrix} E o arepsilon \ P_4 = egin{bmatrix} E o arepsilo$$

2. Заполните в таблице пропущенные клетки:

	a	b	С	d	f	\$
S	P_1	P_2		P_1	$S \to U$	P_2
U		P_3			$U \to fTU$	P_3
T	$T \to FE$			$T \to FE$		
E		P_4	$E \to cFE$		P_4	P_4
F	$F \to aSb$			$F \to d$		

Критерии.

- 0 За всю задачу, если хотя бы в одной из клеток более одного правила
- +1 Верное сопоставление правил
- +1 Верное заполнение таблицы
- **3** (4). Рассмотрим PEG с правилами:

$$S \leftarrow (!A)B(\&C)D$$

$$A \leftarrow aAb/ab$$

$$B \leftarrow abB/baB/ba$$

$$C \leftarrow aC/aa$$

$$D \leftarrow aD/\varepsilon$$

Отметьте слова, порождаемые этим PEG и только их:

\square babaa \square ababbaaaa \square babaaa \square baabbaa \square	\checkmark	babaaaa
--	--------------	---------

Критерии.

- -1 Одна ошибка
- -3 Две ошибки
- 0 Три и более ошибки

Контрольные вопросы и элементарные задачи

Обоснованно ответьте на вопрос

4 (2). Известно, что язык $L = \{w \in \{a,b\}^* : |w|_a = |w|_b\}$ является детерминированным КС языком. Пусть M — детерминированный МП-автомат, распознающий L. Определим функцию $f_M(w)$ как число посещений принимающих состояний при обработке слова w. Пусть $w = (ab)^k a^k b^k$; верно ли, что существует ДМП-автомат M, для которого $f_M(w) \leqslant k+1$?

Ответ: Нет, т. к. при k>0 у слова k+2 префиксов из языка L, соответственно автомат побывает в принимающем состоянии хотя бы k+2 раза.

Критерии.

- +2 Верное решение с отсутствием анализа случая k=0.
- 5(2). Верно ли, что любой КС-язык L можно распознать каким-то МП-автоматом, у которого стек никогда не опустошается полностью при прочтении слов из L?

Указание. Верно. Возьмём МП-автомат, распознающий по пустому стеку; добавим «второе дно» и новое начальное состояние, эпсилон-переход из нового начального в старое начальное, который кладёт старое дно на новое дно; из всех состояний, кроме нового начального — переход по новому дну в новое принимающее состояние без прочих переходов.

Такой автомат примет каждое слово из L: если автомат для L принимает слово, то и новый автомат примет слово по принимающему состоянию. Если же автомат не принимает, то и новый автомат не примет: он никогда не откроет второе дно и не перейдёт в принимающее состояние.

Критерии.

- 0 Неправильный ответ
- ≤ 1 Верная идея при отсутствия достаточной степени обоснования
- **6** (4). Пусть L_1 и L_2 КС-языки. Верно ли, что язык L так же является КС-языком?

$$L = \{xyz : y \in L_1, xz \in L_2\}$$

Указание. Построим МП-автомат \mathcal{M}_2 для языка L_2 и его дубль \mathcal{M}_1 , допускающие по принимающему состоянию; при этом в \mathcal{M}_1 нет принимающих состояний. Построим МП-автомат \mathcal{A} для языка L_1 , допускающий по пустому стеку, с дном стека Z_2 . Соединим их следующим образом: из каждого состояния q автомата \mathcal{M}_1 есть переход по пустому слову, кладущий в стек Z_2Z_q , в начальное состояние \mathcal{A} ; из каждого состояния \mathcal{A} для каждого Z_q есть переход по пустому слову, снимающий со стека Z_q , в состояние q автомата \mathcal{M}_2 .

Этот автомат примет каждое слово из языка L. Действительно: он дойдёт до состояния q по слову x; затем обработает слово y из L_1 и окажется с пустым стеком (снимет Z_2); перейдёт в то же состояние q, в котором закончил обработку слова x, и продолжит из него обработку слова z, и примет его.

Если слово не из языка, то либо у него нет подслова y, лежащего в L_1 (тогда при попадании в \mathcal{A} автомат не опустошит стека); либо же у него всякая конкатенация префикса x и суффикса z, такая, что $y \in L_1$, не будет лежать в языке. Ход \mathcal{M}_1 и \mathcal{M}_2 буквально смоделирует ход автомата \mathcal{M}_3 , распознающего L_2 , и он не остановится в принимающем состоянии.

Критерии.

- +2 Корректный автомат (если корректность не доказана, но проверяющий смог её установить)
- +1 За доказательство включения языков в каждую сторону $(L(A) \subseteq L, L \subseteq L(A))$

Задачи

Приведите обоснованное решение

7(4+4). Явлется ли КС-языком язык L? При положительном ответе построить КС-грамматику или МП-автомат для L.

1.
$$L = \{wxyz \mid w = z^R \land x = y^R, \text{ где } w, z \in \{a, b\}^*, x, y \in \{c, d\}^*\}$$

2.
$$L = \{wxyz \mid w = y^R \land x = z^R \text{ где } w, y \in \{a, b\}^*, x, z \in \{c, d\}^* \}$$

Указание. 1. Язык является КС: грамматика строится аналогично языку палиндромов:

$$S \to aSa \mid bSb \mid A$$
, $A \to cSc \mid dSd \mid \varepsilon$.

2. Язык не КС: для леммы о накачке подойдёт слово $a^n c^n a^n c^n$.

Критерии.

1.

- +1 Верная грамматика или автомат
- +1 За доказательство включения языков в каждую сторону $(L(G) \subseteq L, L \subseteq L(G))$

2.

- 0 Неправильный ответ
- 0 Отсутствует последовательность слов
- $\leqslant 1$ Неверно выбрана последовательность слов
- +1 Верно выбрана последовательность слов
- 8 (6). Является ли G LL(1)-грамматикой? При отрицательном ответе постройте эквивалентную LL(1)-грамматику G', при положительном считайте, что G'=G. Вычислите функции FIRST и FOLLOW для грамматики G'. Постройте LL(1)-анализатор для G' и постройте с его помощью дерево вывода слова aaa. Грамматика G задана правилами:

$$\begin{split} S &\to AB \mid AC \mid b \mid \varepsilon \\ A &\to Aa \mid a \\ B &\to \varepsilon \\ C &\to CbA \mid CbB \end{split}$$

Критерии.

- $+0.5\,$ Обоснование того, что грамматика не LL(1)
- +1,5 FIRST, FOLLOW (FOLLOW CTOUT 0,5).

- -0,5 Отсутствие протокола построения FIRST, FOLLOW (за каждый).
- +0.5 Факторизация.
- +0.5 Удаление рекурсии.
- +0.5 Приведение КС-грамматики (удаление бесплодного C).
- +1.5 Таблица анализатора.
- +0.5 Протокол работы анализатора.
- +0.5 Дерево вывода.
- 9(5). Грамматика G задана правилами

$$S \to SS \mid (S) \mid (A), \qquad A \to aA \mid bA \mid \varepsilon.$$

- 1. Является ли G однозначной?
- 2. Считая, что слова из языка L(G) кодируют лес, в листьях которого записаны слова над алфавитом $\{a,b\}$, дополните G до атрибутной грамматики, вычисляющей максимальную глубину самого длинного слова, записанного в листе. В случае если самых длинных слов несколько возвращается максимальная из глубин.

Критерии.

- +1 Обоснование неоднозначности грамматики
- +2 Построение атрибутной схемы (если корректность не доказана, но проверяющий смог её установить)
- +2 Доказательство корректности
- 10 (1+2+4). Модифицируем МП-автомат, допускающий по принимающему состоянию, добавив ещё один стек. Функция переходов устроена следующим образом: $\delta(q, a, x_1, x_2) = (p, \alpha_1, \alpha_2)$, где q, p состояния автомата, $a \in (\Sigma \cup \varepsilon)$, x_1, x_2 символы на вершине первого и второго стека соотвественно, α_1, α_2 слова, добавляемые в первый и второй стек при переходе.
 - 1. Верно ли, что модицифированный МП-автомат принимает любой КС-язык?
 - 2. Верно ли, что он принимает пересечение любых двух КС-языков?
 - 3. Существует ли не КС-язык, распознаваемый модифицированным МП-автоматом?

Указание. 1. Да, можно во втором стеке дублировать первый стек; получаем автомат, эквивалентный МП-автомату, допускающему по принимающему состоянию.

- 2. Да, пересечение строится конструкцией произведения
- 3. Да, например $a^n b^n c^n$.