Вариант 2

- 1. Язык L_1 задан регулярным выражением (b | ab | aaa*b)*aaa*. Язык L_2 задан регулярной грамматикой $G = \{\{X, Y, Z\}, \{a, b\}, \{X \to aY, Y \to a, Y \to aZ, Z \to a, Z \to b, Z \to aZ, Z \to bZ\}, X\}$. Построить минимальный детерминированный конечный автомат, допускающий язык $\overline{L_1} \cap L_2^R$.
- 3. Является ли язык, заданный грамматикой $G = \{\{S, A, B\}, \{a, b\}, \{S \rightarrow AB \mid b, B \rightarrow SA, A \rightarrow a \mid b\}, S\}$, регулярным?
- 4. Ответьте на вопросы. Необоснованные ответы, даже правильные, не оцениваются.
- 4.1. Верно ли, что если язык F, который лежит в пересечении двух языков L_1 и L_2 (то есть $F \subseteq L_1 \cap L_2$), является регулярным языком, то языки L_1 и L_2 являются регулярными?
- 4.2. Пусть L нерегулярный язык. Верно ли, что если $F\cap L$ регулярный язык и $F\cap \overline{L}$ регулярный язык, то и F регулярный язык?
- 4.3. Пусть X регулярный язык. Верно ли, что для любого m язык $\bigcup_{n=m}^{\infty} X^n$ является регулярным?
- 4.4. Приведите пример бесконечного регулярного языка X на алфавите $\{a, b\}$, отличного от множества всех слов, такого что $X \cap (\Sigma^* \setminus X)^R = X$.
- 4.5. Пусть A минимальный автомат для языка R. Верно ли, что в минимальный автомате B для языка \overline{R} столько же состояний, сколько и в автомате A? При отрицательном ответе привести пример.
- 4.6. Возможно ли, что если язык L не допускается ни одной машиной Тьюринга, то он допускается некоторым конечным автоматом?