Неделя 6. Бинарные отношения

Обозначения: xPy сокращение для $(x,y) \in P$. По аналогии с отношениями типа «больше». P^{-1} — обратное отношение, содержит такие пары (x,y), что $(y,x) \in P$. \overline{P} — дополнительное отношение, содержит пары, не содержащиеся в P. $P \circ Q$ — композиция отношений P и Q.

- 1. Найдите результат операций над отношениями, определенными на множестве действительных чисел.
 - а) $\overline{(>)}$; б) $(>)^{-1}$; в) $(\geq)\Delta(\leq)$; г) $(>)\cap(<)$; д) $(=)\circ(>)$; е) $(<)\circ(<)$; ж) $(<)\circ(>)$.
- 2. Являются ли следующие отношения рефлексивными, симметричными транзитивными:
 - а) «точки a и b лежат на одной прямой»;
 - **б)** «прямая a перпендикулярна прямой b»;
 - в) «прямая a параллельна прямой b» (ответ зависит от того, по какому учебнику вы изучали геометрию)?
- **3.** Пусть $f:A \to B$ некоторое отображение. Будут ли следующие отношения отношениями эквивалентности на множестве A:
 - a) $x \sim_f y \iff f(x) = f(y);$ 6) $x \sim_{\bar{f}} y \iff f(x) \neq f(y)$?

В случае положительного ответа на вопрос, опишите классы эквивалентности для соответствующего отношения.

- 4. Верно ли, что
 - а) композиция $f \circ g$ инъекции f и инъекции g является инъекцией?
 - **б)** композиция $f \circ g$ сюръекции f и сюръекции g является сюръекцией?
 - в) композиция $f \circ g$ сюръекции f и инъекции g является сюръекцией?
 - г) композиция $f \circ g$ инъекции f и сюръекции g является инъекцией?
- **5.** Функции в этой задаче предполагаются всюду определенными. Говорят, что $g: B \to A$ является левой обратной (соответственно правой обратной) к f, если $g \circ f = \mathrm{id}_A$ (соответственно $f \circ g = \mathrm{id}_B$).
 - **а)** Приведите примеры, когда левая обратная не является правой обратной и когда правая обратная не является левой.
 - б) Может ли такое случиться для конечных множеств?
 - в) Может ли быть так, что у одной функции есть и левая, и правая обратные, но они различны?
 - г) Для каких функций существует левая обратная?
 - д) Для каких функций существует правая обратная?
- 6. Сравните множества:
- a) $(\bigcup_{i\in I}A_i)\times(\bigcup_{i\in J}B_i)$ $\vee \bigcup_{i\in I, i\in J}(A_i\times B_i);$ 6) $(\bigcap_{i\in I}A_i)\times(\bigcap_{i\in J}B_i)$ $\vee \bigcap_{i\in I, i\in J}(A_i\times B_i).$
- 7. Пусть $P \subseteq A \times A$ и $Q \subseteq B \times B$ отношения эквивалентности. Будет ли отношением эквивалентности отношение $R \subseteq (A \times B) \times (A \times B) : (a,b)R(a',b') \iff aPa',bQb'$?
- 8. Выразите отношение «племянник» через отношения «отец» и «мать» и операции над отношениями.

Домашнее задание 6

Напоминаем, что ответы на вопросы должны быть обоснованы.

- **1.** Для каких бинарных отношений P справедливо $\overline{P} = P^{-1}$?
- **2.** Пусть бинарные отношения $P_1, P_2 \subseteq A \times A$ транзитивны. Будут ли $\overline{P_1}, P_1 \cap P_2, P_1 \cup P_2, P_1 \circ P_2$ обладать теми же свойствами?
- **3.** Бинарное отношение на множестве из 6 элементов содержит 33 пары. Может ли оно быть **a)** симметричным; **б)** транзитивным?
- **4.** Об отображениях (всюду определенных функциях) f, g из множества A в себя известно, что $f \circ g \circ f = \mathrm{id}_A$. Верно ли, что f биекция? (Множество A не обязательно конечное.)
- **5.** О функциях f из множества A в множество B и g из множества B в множество A (не обязательно всюду определенных) известно, что $g \circ f = \mathrm{id}_A$. Верно ли, что g всюду определена? (Множество A не обязательно конечное.)
- **6.** Пусть R отношение эквивалентности на множестве A. Докажите, что существуют такие множество B и отображение $f: A \to B$, что каждый класс эквивалентности C представим в виде $C = f^{-1}(b)$ для некоторого элемента $b \in B$.
- 7. О функциях f, g из множества A в себя (не обязательно всюду определенных) известно, что $g \circ f$ нигде не определена. Множество A состоит из 11 элементов. Найдите максимально возможное количество элементов в образе $f \circ g(A)$.
- 8. Множество A состоит из семи элементов. Найдите количество отображений $f:A\to A$, таких что $f\circ f=\mathrm{id}_A.$