Seminar 1. Basics of logic

1. Find the word for which the following proposition is false
"The first letter is vowel \rightarrow (The second letter is vowel \vee The last letter is consonant)"
1) Heat
2) Owl
3) Amphora
4) Parade
2. Prove the following statements a) $x \rightarrow y=\bar{x} \vee y$; b) $\overline{x \wedge y}=\bar{x} \vee \bar{y}$ c) $\overline{x \rightarrow y}=x \wedge \bar{y}$.
3. A Boolean function f is defined by the vector of values: $f\left(x_{1}, x_{2}, x_{3}\right)=10100101$.

Describe f via a) Truth table
b) Disjunctive Normal Form (DNF)
c) Conjunctive Normal Form (CNF)

Which variables of f are d) significant? e) dummy?
4. Let $f_{01}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a Boolean function such that $f_{01}\left(x_{1}, \ldots, x_{n}\right)=0$ either on the input $(0,0, \ldots, 0)$ or on the input $(1,1, \ldots, 1)$. Describe f_{01} in CNF.
5. Construct DNF expansions for the Boolean functions described by formulas:
a) $x_{1} \oplus x_{2} \oplus\left(x_{1} \wedge x_{2}\right)$;
b) $\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{4}\right) \wedge \cdots \wedge\left(x_{1} \vee x_{9}\right)$;
c) $* \bigwedge_{1 \leqslant i<j<k \leqslant 5}\left(x_{i} \vee x_{j} \vee x_{k}\right) \wedge\left(\bar{x}_{i} \vee \bar{x}_{j} \vee \bar{x}_{k}\right)$.
6. Prove the following expansion formulas (Shannon expansions):
a) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\bar{x}_{1} \wedge f\left(0, x_{2}, \ldots, x_{n}\right)\right) \vee\left(x_{1} \wedge f\left(1, x_{2}, \ldots, x_{n}\right)\right)$;
b) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\left(1 \oplus x_{1}\right) \wedge f\left(0, x_{2}, \ldots, x_{n}\right)\right) \oplus\left(x_{1} \wedge f\left(1, x_{2}, \ldots, x_{n}\right)\right)$.
7. A Boolean function $\operatorname{MAJ}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is false when $n / 2$ or more arguments are false, and true otherwise. (Equals to the majority value of the input variables). Prove that MAJ has a DNF-expansion such that each literal is a variable (there is no negation in each clause).
8. Prove that there is no boolean function $f(x, y)$ with both significant variables such that

$$
\overline{f(x, y)}=f(\bar{x}, \bar{y}) .
$$

Home assignment 1

1. $a, b, c-$ are integers such that the following proposition holds

$$
\neg(a=b) \wedge((b<a) \rightarrow(2 c>a)) \wedge((a<b) \rightarrow(a>2 c))
$$

Find a if $c=7, b=16$.
2. Prove the formula

$$
1 \oplus x_{1} \oplus x_{2}=\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{1}\right) .
$$

3. Find significant and dummy variables of the following functions:
a) $f\left(x_{1}, x_{2}, x_{3}\right)=00111100$;
b) $g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \rightarrow\left(x_{1} \vee x_{2}\right)\right) \rightarrow x_{3}$.
4. Construct for the function f from the previous problem a) a DNF expansion. b) a CNF expansion.
5. Prove the expansion formula

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \vee f\left(0, x_{2}, \ldots, x_{n}\right)\right) \wedge\left(\overline{x_{1}} \vee f\left(1, x_{2}, \ldots, x_{n}\right)\right) .
$$

6. Construct a DNF expansion for the function $x_{1} \rightarrow\left(x_{3} \wedge \neg x_{2} \leftrightarrow x_{1}\right)$.
7. Construct a DNF expansion for the function $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(x_{2} \rightarrow x_{3}\right) \wedge \ldots \wedge\left(x_{7} \rightarrow x_{8}\right)$.
8. A Boolean function $\operatorname{PAR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (parity) equals 1 if the number of ones among the values of variables $x_{1}, x_{2}, \ldots, x_{n}$ is odd an equals zero if it is even.
a) Construct a formula for $\operatorname{PAR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. It is allowed to use logical connectives $\wedge, \vee, \neg, \oplus, \rightarrow$.
b) Is it possible to expand $\operatorname{PAR}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ via DNF without negations?
