Seminar 2. Set Theory and Logic

1. Prove that for any sets A, B and C the following equalities hold:
a) $A \backslash(A \backslash B)=A \cap B$;
b) $B \cup(A \backslash B)=A \cup B$;
c) $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$;
d) $(A \cup B) \backslash C=(A \backslash C) \cup(B \backslash C)$.

Use both Euler-Venn diagrams and corresponding propositional logic equations.
2. Prove that the following inclusion holds

$$
\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) \Delta\left(B_{1} \cap B_{2} \cap \cdots \cap B_{n}\right) \subseteq\left(A_{1} \triangle B_{1}\right) \cup\left(A_{2} \triangle B_{2}\right) \cup \cdots \cup\left(A_{n} \triangle B_{n}\right)
$$

for arbitrary sets A_{i}, B_{i}.
3. Prove that the following equality holds

$$
\left(A_{1} \cap A_{2} \cap A_{3} \cap \cdots \cap A_{n}\right) \backslash\left(B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right)=\left(A_{1} \backslash B_{1}\right) \cap\left(A_{2} \backslash B_{2}\right) \cap \cdots \cap\left(A_{n} \backslash B_{n}\right)
$$

for arbitrary sets A_{i}, B_{i}.
4. Express the characteristic function $\chi_{A \triangle B}(x)$ via an equation that contains only (but not necessary all) $\chi_{A}(x), \chi_{B}(x)$ and
a) boolean operations \wedge, \vee, \neg;
b) arithmetic operations,,$+- \times$.
5. Express $|A \triangle B|$ via an equation that contains only $\chi_{A}(x), \chi_{B}(x)$ and arithmetic operations.
6. Consider statements of the form $X=Y$ where X and Y contain only set variables and operations \cap, \cup, \. Prove that if such a statement is false then there is a counterexample such that each set in it either an empty set or contains the only element, say 1 .

Home Assignment 2

1. Does the following equality hold for arbitrary sets A and B ?

$$
(A \backslash B) \cap((A \cup B) \backslash(A \cap B))=A \backslash B
$$

2. Does the following equality hold for arbitrary sets A, B and C ?

$$
((A \backslash B) \cup(A \backslash C)) \cap(A \backslash(B \cap C))=A \backslash(B \cup C)
$$

3. Does the following equality hold for arbitrary sets A, B and C ?

$$
(A \cap B) \backslash C=(A \backslash C) \cap(B \backslash C)
$$

4. Does the following inclusion hold for arbitrary sets A and B ?

$$
(A \cup B) \backslash(A \backslash B) \subseteq B
$$

5. Sets A, B, X, Y satisfy the properties $A \cap X=B \cap X, A \cup Y=B \cup Y$. Does the equality $A \cup(Y \backslash X)=$ $B \cup(Y \backslash X)$ necessarily hold?
6. Fix a decreasing sequence of sets $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots \supseteq A_{n} \supseteq \ldots$ such that $A_{1} \backslash A_{4}=A_{6} \backslash A_{9}$. Prove that $A_{2} \backslash A_{7}=A_{3} \backslash A_{8}$.
7. Let A, B, C, D be closed line segments (sets of the form $\left[x_{1}, x_{2}\right], x_{i} \in \mathbb{R}$) such that $A \triangle B=C \triangle D$. Does it imply the inclusion $A \cap B \subseteq C$?
