Seminar 5. Binomial coefficients

1. Chess rook stands in the left-most squared of a non-standart chessboard of size 1 times30. It can go only to the right at any (positive) number of squares per move.
a) In how many ways can the rock reach the right-most square?
b) In how many ways can the rock reach the right-most square by exactly 7 moves?
2. Find the coefficient
a) of a term $x^{3} y^{7}$ in the expansion of $(2 x-y)^{10}$;
b) of a term $x_{1}^{3} x_{2} x_{4}^{5} x_{5}$ in the expansion of $\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{10}$.
3. Prove that
a) $\sum_{j=0}^{k}\binom{r}{j}\binom{s}{k-j}=\binom{r+s}{k}$;
b) $\sum_{j=0}^{n}\binom{j}{k}=\binom{n+1}{k+1}$.
(Try to find out a combinatorial proof.)
4. How many solutions of an equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=11$ in non-negative integers (\mathbb{N}) are there?
5. In how many ways you can give 15 identical candies to 7 children so that each child gets at least one candy?
6. In how many ways you can choose 6 numbers from 1 to 15 , so that among them there are not two, differing by one?
7. An expansion of a positive integer n is a sequence of positive integers $x_{1}, x_{2}, \ldots, x_{k}$ such that $x_{1}+x_{2}+\cdots+x_{k}=n$. Find the number of expansions of n in odd terms.
8. Prove that

$$
\binom{n+k+1}{k}=\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\ldots+\binom{n+k}{k}
$$

Home Assignment 5

1. A robot moves in a coordinate plane. At each step, it can increase one coordinate by 1 or both coordinates by 2 . How many ways are there to move a robot from the point $(0,0)$ to point $(4,5)$?
2. Which term of $(1+2)^{n}$ in the binomial expansion is the largest one?
3. Find the number of words of length n over the alphabet $\{0,1\}$ in which there are no two ones in a row.
4. Prove the formula $\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k}$ via combinatorial proof.
5. Which number is greater: $\binom{F_{1000}}{F_{998}+1}$ or $\binom{F_{1000}}{F_{999}+1}$? Here F_{n} stands for n-th Fibonacci number.
6. Prove the formula (try to find a combinatorial proof!)

$$
\sum_{0 \leqslant k \leqslant(n+1) / 2}\binom{n-k+1}{k}=F_{n+2} .
$$

The following problems are moved to the next home assignments.
7. How many ways are there to place 20 of various books on 5 shelves if each shelf can hold all 20 books? Arrangements that differ in the order of books on the shelves are different.
8. A student council of 8 people chooses a chairman from among its members by secret voting. Everyone can cast one vote for any student council member. The result of a vote is the number of votes cast for each candidate. How many different voting results are there?

