Seminar 6. Combinatorics and functions

1. How many solutions of an equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=11$ in non-negative integers (\mathbb{N}) are there?
2. In how many ways you can give 15 identical candies to 7 children so that each child gets at least one candy?
3. In how many ways you can choose 6 numbers from 1 to 15 , so that among them there are no two, differing by one?
4. Count the number of a) totally defined functions b) (partially defined) functions \mathbf{c}) injections from a 5 -element set to a 9 element set.
5. A function f is defined from a set $\{1,2, \ldots, 8\}$ to a set $\{a, b, \ldots, e\}$ as follows:

$$
f: 1 \mapsto a, \quad 2 \mapsto a, \quad 3 \mapsto c, \quad 4 \mapsto d, \quad 5 \mapsto c, \quad 7 \mapsto d .
$$

Find a) $\operatorname{Dom}(f)$
b) Range (f)
c) $f(\{1,2,3\})$
d) $f^{-1}(c)$
e) $f(\{1,2,3,5,6\})$
f) $f^{-1}(\{a, b, c\})$
6. A (partial) function g from the positive integers to themselves returns the greatest prime devisor of a number on the input.
a) Find $\operatorname{Dom}(g)$.
b) Find Range (g).
c) Is it true that if X is a finite set then $g^{-1}(X)$ is also a finite set?
7. In how many ways can one distribute k (different) gifts to n children such that
a) each child gets exactly one gift
b) the first child gets k_{1} gifts, the second gets k_{2} gifts, \ldots, the n-th gets k_{n} gifts ($k_{1}+k_{2}+\cdots+k_{n}=k$)

Name the type of function corresponding to such a distribution and describe the function itself: name the domain and the range.
8. Find the number of a) non-increasing injections $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\} ;$ b) non-increasing surjections $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\}$.
a function is non-increasing if $x \leqslant y$ implies $f(x) \leqslant f(y)$.
9. Let f be a partial function from A to B and $X, Y \subseteq A, U, V \subseteq B$. Do the following statements hold for arbitrary f, A, B, X, Y, U, V ?
a) $f(X \cup Y)=f(X) \cup f(Y)$;
b) The condition $f(X)=f(Y)$ implies $X \cap Y \neq \varnothing$;
c) $f^{-1}(U \cap V)=f^{-1}(U) \cap f^{-1}(V)$;
d) The condition $f^{-1}(U)=f^{-1}(V)$ implies $U=V$.

Home Assignment 5

1. How many ways are there to place 20 of various books on 5 shelves if each shelf can hold all 20 books? Arrangements that differ in the order of books on the shelves are different.
2. A student council of 8 people chooses a chairman from among its members by secret voting. Everyone can cast one vote for any student council member. The result of a vote is the number of votes cast for each candidate. How many different voting results are there?
A function h is defined from a set $\{0,1, \ldots, 8\}$ to a set $\{a, b, \ldots, g\}$ for the two following problems as follows:

$$
h: 1 \mapsto b, \quad 2 \mapsto c, \quad 3 \mapsto b, \quad 4 \mapsto e, \quad 5 \mapsto b, \quad 6 \mapsto e, \quad 8 \mapsto f .
$$

3. Find a) $\operatorname{Dom}(h)$
b) Range (h)
c) $h(\{0,1,2,3,4\})$
d) $h^{-1}(\{a, b, c\})$
4. Find a) $h^{-1}(h(\{0,1,2,6,7,8\}))$
b) $h\left(h^{-1}(\{a, b, c, d, e\})\right)$.

Only answers are valid for the problems 3-4, but be ready to provide the explanations during a homework defense.
5. A function f from the set of integers to itself maps x to the smallest prime number that is greater than x^{2}. Prove that if the set of integers X is finite, then the preimage of this set $f^{-1}(X)$ is finite.
6. In how many ways can you distribute 9 different items to 4 people (everyone can get any number of items, even zero)? Name the type of function corresponding to such a distribution and describe the function itself: name the domain and the range.
7. Find the number of non-decreasing functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, m\}$. The function is nondecreasing if $x \leqslant y$ implies $f(x) \leqslant f(y)$.

