Discrete Mathematics DSBA

Seminar 10. Binary Relations

Notation. xPy stands for $(x,y) \in P$. P^{T} is a transpose (or converse) relation that consists of pairs (y,x) such that $(x,y) \in P$. \overline{P} is a complement to the relation P, it consists of all the pairs that do not belong to P. $Q \circ P \subseteq X \times Z$ is a composition of relations $P \subseteq X \times Y$ and $Q \subseteq Y \times Z$. It is defined by the formula

$$Q \circ P = \{(x, z) \mid \exists y \in Y : (xPy) \land (yQz)\}.$$

Note that the order of operands in the composition is chosen so that a composition of functions $f \circ g$ is a function f(g(x)).

1. Draw a bipartite graph corresponding to the binary relation $R \subseteq \{a, b, c, d, e\} \times \{1, 2, 3, 4, 5, 6\}$:

$$R = \{(a, 1), (a, 2), (b, 4), (c, 3), (d, 5)\}.$$

and answer the following questions.

- a) Is R a function?
- **b)** Is R^{\intercal} is a function?
- **2.** Answer the following questions for the binary relation $R \subseteq \{1,2,3\} \times \{1,2,3\}$. Is R reflexive? symmetric? transitive? an equivalence relation? For each relation R draw the corresponding graph. Choose undirected graphs for symmetric relations, in the case of non-reflexive relation use loops.
- a) $R = \{(1,2), (2,3), (1,3)\}$
- **b)** $R = \{(1,2), (2,1), (1,1)\}$
- c) $R = \{(1,1), (2,2), (3,3)\}$
- **d)** $R = \{(x, y) \mid x, y \in \{1, 2, 3\}\}$
- e) $R = \emptyset$
- **3.** Compute the resulting binary relation. Describe it via math. symbols or in English. Each relation is defined over real numbers.
 - $\mathbf{a)} \ \overline{(>)}; \quad \mathbf{b)} \ (>)^{\intercal}; \quad \mathbf{c)} \ (\geq) \Delta(\leq); \quad \mathbf{d)} \ (>) \cap (<); \quad \mathbf{e)} \ (=) \circ (>); \quad \mathbf{f)} \ (<) \circ (<); \quad \mathbf{g)} \ (<) \circ (>).$
- **4.** Are the following binary relations defined on th set of points or the set of lines of a geometrical plain (\mathbb{R}^2) reflexive, symmetric, transitive?
- a) aPb = "Points a and b lie on a line"
- **b)** aQb = "Line a is perpendicular to line b"
- c) aRb = "A line a is parallel to a line b" (The answer depends on your textbook on geometry)

Discrete Mathematics DSBA

Home Assignment 10

1. Answer the following questions for the binary relation $R \subseteq \{1,2,3\} \times \{1,2,3\}$. Is R reflexive? symmetric? transitive? an equivalence relation? For each relation R draw the corresponding graph. Choose undirected graphs for symmetric relations, in the case of non-reflexive relation use loops.

- a) $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (3,2)\}$
- **b)** $R = \{(1,1), (1,2), (2,1), (2,2)\}$
- **2.** Express the relation "Nephew" via the relations "Mother" and "Father" and arbitrary operations with relations. Formally, xNy holds if and only if x is a nephew of y, xMy (xFy) holds if and only if x is the mother (father) of y.
- **3.** Is it true that for arbitrary transitive relations $P_1, P_2 \subseteq A \times A$ the following relations would be transitive?
- a) $\overline{P_1}$ b) $P_1 \cap P_2$
- **4.** Is it true that for arbitrary transitive relations $P_1, P_2 \subseteq A \times A$ the following relations would be transitive?
- **a)** $P_1 \cup P_2$ **b)** $P_1 \circ P_2$
- **5.** A binary relation on the set of 6 elements contains 33 pairs. Can it be **a**) symmetric **b**) transitive?
- **6.** Which of the following relations are equivalence relations on \mathbb{N} ?
- a) xPy: numbers x and y have the same last digit (hereinafter in decimal representation)
- **b)** xQy: numbers x and y differs in the exactly one digit.
- c) xRy: the difference between the sums of digits S_x and S_y is even. Formally, let $\overline{x_n x_{n-1} \dots x_1 x_0}$ be the decimal representation of x; $S_x = \sum_{k=0}^{n} x_k$.
- **7.** How many relations R on the set $\{1, 2, 3, 4\}$ are the equivalence relations?
- 8. Let R be an equivalence relation on a set A. Prove that there exist such a set B and a mapping $f: A \to B$ such that each equivalence class C can be expressed as $C = f^{-1}(b)$ for some element $b \in B$ (here f^{-1} is the preimage).