Discrete Mathematics

Seminar 11. Integers, Divisors and Primes

1. It is known that a, b, c, d are positive integers, $a b=c d$ and a is divisible by c. Prove that d is divisible by b.
2. It is known that the quotient of the division with the remainder of a positive integer m by 13 is the same as the quotient of the division of m by 15 . In the first case the remainder is 8 and in the second case it is 0 . Find m.
3. Find the remainder of the devision
a) 100^{100} by 99
b) $\binom{15}{8}$ by 13 ;
c) $20^{2}+21^{2}+22^{2}$ by 23 ;
d) $\binom{32}{3}$ by 33 ;
e) $8^{8^{8^{8}}}$ by 13
4. Formulate and prove divisibility rules for numbers a) 9 b) 11 (in the decimal representation).
5. a) Which digits occur on the last position of numbers that are the powers of 3 ? b) Prove that the digit on the last but one position of a power of 3 is even.
6. a) Let p be a prime number greater than 3 . Prove that $p^{2}-1$ is divisible by 24 . b) Prove that for any integer a the number $a^{73}-a$ is divisible by 2 , by 3 , by 5 , by 7 , by 13 , by 19 , by 37 , by 73 .
7. Prove that $(p-1)$! gives the remainder -1 modulo p for any prime number p.
8. Prove that for any positive integer $n \geqslant 2$ there is a prime number between n and $n!$.

Discrete Mathematics

Home Assignment 11

1. Find the last two digits of the number 99^{1000}.
2. Which of the following assertions about the integers a, b, c are true: (1) if a is divisible by c, and b is not divisible by c, then $a+b$ is not divisible by c; (2) if a is not divisible by c and b is not divisible by c, then $a+b$ is not divisible by c; (3) if a is not divisible by c and b is not divisible by c, then $a b$ is not divisible by c; (4) if a is divisible by b and b is divisible by c, then $a b$ is divisible by c^{2} ? Prove the assertions that are true and give counterexamples to the false ones.
The correct answer (with the proof) to each question gives 1 point to the overall grade for the task (maximum 4 points).
3. Let x and y be integers. Prove that the number $x+10 y$ is divisible by 13 if and only if $y+4 x$ is divisible by 13 .
4. A positive integer a is even, but not divisible by 4 . Show that the number of (positive) even divisors of a is equal to the number of (positive) odd divisors of a.
5. A positive integer x consists of the following digits: 100 zeros, 100 ones, and 100 twos. Can x be a perfect square $\left(x=n^{2}\right)$?
6. Prove that the numbers a^{2} and b^{2} have the same remainder after division by $a-b$ if a and b are positive integers and $a>b$.
7. Find the smallest positive integer N such that both the sum of the digits of the number N and the sum of the digits of the number $N+1$ are divisible by 7 .
8. It is known that the number $a^{10}+b^{10}+c^{10}+d^{10}+e^{10}+f^{10}$ is divisible by 11 . Prove that the number $a b c d e f$ (the product of a, b, c, d, e, f) is divisible by 11^{6}. Here a, b, c, d, e, f are integers.
