Discrete Mathematics

Seminar 12. Numbers II. The Euclidean Algorithm

Preambula. If you are asked to find the number of solutions of an equation modulo N then you shall find the number of reminders (or congruence classes modulo N) satisfying the equation.

- 1. Find all integers x and y for which 45x 37y = 25.
- **2.** Find the number of solutions of the equation $39x \equiv 104 \pmod{221}$.
- **3.** Let gcd(a, b) = 1. Find all possible values of $gcd(a + b, a^2 + b^2)$.
- 4. Solve the system of modulo congruence equations
 - $\begin{array}{ll} x\equiv 3 \pmod{13},\\ x\equiv 4 \pmod{14},\\ x\equiv 5 \pmod{15}. \end{array}$

5. Solve the system of modulo congruence equations

 $\begin{array}{ll} x\equiv 3 \pmod{15},\\ x\equiv 4 \pmod{21},\\ x\equiv 5 \pmod{35}. \end{array}$

- **6.** Find the reminder after devision of **a**) 19¹⁰ by 66; **b**) 19¹⁴ by 70; **c**) 17⁹ by 48; **d**) 14^{14¹⁴} by 100.
- 7. Find the remainder of $\underbrace{111...111}_{105 \text{ digits}}$ after devision by 107.

8. Prove inclusion-exclusion formulas for gcd and lcm (least common multiple).

a)
$$\operatorname{lcm}(x, y) = \frac{xy}{\operatorname{gcd}(x, y)};$$

b) $\operatorname{lcm}(x, y, z) = \frac{xyz \cdot \operatorname{gcd}(x, y, z)}{\operatorname{gcd}(x, y) \cdot \operatorname{gcd}(x, z) \cdot \operatorname{gcd}(y, z)};$

9. Prove that $(p-1)! \equiv -1 \pmod{p}$ for any prime number p.

Discrete Mathematics

Home Assignment 12

1. Find all integers x and y for which 102x + 39y = 27.

2. Find the number of of positive integers x that are smaller or equal than 10800 and relatively prime with 10800 (i.e. gcd(x, 10800) = 1).

3. Compute $9^{10^{3979}} \mod 19$.

4. Prove that if gcd(a, b) = gcd(a, c) = 1 then gcd(a, bc) = 1.

5. Find the multiplicative inverse of 74 modulo 47.

6. Do there exist nonnegative integers x and y that are the solution of the equation 31x + 75y = 2345?

7. Compute $gcd(3^{168} - 1, 3^{140} - 1)$.

8. Solve the congruence equation $x^3 \equiv x \pmod{125}$. (You shall find all the remainders modulo 125 satisfying the equation.)