Discrete Mathematics

Seminar 13. Countable sets

1. Prove that the following sets are countable:
a) $\left\{n^{2} \mid n \in \mathbb{N}\right\}$
b) $\{(x, y) \mid x \in \mathbb{Z}, y \in\{1,2,3\}\}$
c) $\{(x, y) \mid x \in \mathbb{Z}, y \in \mathbb{N}\}$
2. It is known that $A \subseteq B$ and $A \neq B$. Is it possible that A and B are of the same cardinality?
3. Prove that if A is an infinite set and B is a finite set, then the set $A \backslash B$ has the same cardinality as A.
4. Is it true that if B is a finite set then a set $A \cup B$ has the same cardinality as A (for arbitrary A)? Try $A=\mathbb{N}$ at first.
5. Let A be an infinite set and B be a countable set. Is it true, that the set $A \cup B$ has the same cardinality as A ?
6. Prove that if A and A^{\prime} are of the same cardinality and B and B^{\prime} are of the same cardinality then $A \times B$ and $A^{\prime} \times B^{\prime}$ are of the same cardinality.
7. Prove that the following sets are countable:
a) $\mathbb{Z} \times \mathbb{Q}$
b) $\mathbb{N}^{k}=\underbrace{\mathbb{N} \times \mathbb{N} \cdots \mathbb{N}}_{k}$
c) $\{\{p, q\} \mid p, q \in \mathbb{Q}, p \neq q\}$
8. Prove that the set of finite subsets of rational numbers is countable.
9. Let A be a finite set and B be a countable set. Prove that the set of totally-defined functions $f: A \rightarrow B$ is countable.
10. Is it possible that B is not of the same cardinality that B^{\prime}, but the sets $A \times B$ and $A^{\prime} \times B^{\prime}$ are of the same cardinality (for some A)?

Discrete Mathematics

Home Assignment 13

1. Are the following sets countable?
a) The set of prime numbers; b) $\{n \mid n$ is a prime or an even number $\}$.
2. Prove that $\mathbb{N} \times \mathbb{Z} \times \mathbb{Q}$ is a countable set.
3. Let $A \backslash B$ be an infinite set and B be a finite set. Does it imply that $A \backslash B$ and A are of the same cardinality (for arbitrary A and B)?
4. Let A be an infinite set and B be a countable set. Does it imply that $A \triangle B$ and A are of the same cardinality (for arbitrary A and B)?
5. Let A be an infinite set. Is it true, that for some countable subset $B \subseteq A$ there exists a surjection $f: A \backslash B \rightarrow$ A?
6. Prove that any set of non-intersecting intervals $((a, b)$ and (c, d) have no common points) is either finite or countable.
7. Prove that any infinite set contains infinitely many non-intersecting countable subsets.
8. Let $f: A \rightarrow B$ be a totally-defined function. It is known that B is a countable set and for any $y \in B$ the preimage $f^{-1}(y)$ is either a finite or a countable set. Prove that A is either finite or a countable set.
