Discrete Mathematics

Seminar 14. Uncountable sets

- **1.** Construct a bijection between a circle of radius 1 and a circle of radius R > 0.
- **2.** Construct a bijection between the interval (a, b) and the set $(a, b) \cup \mathbb{Z}$.
- **3.** Prove that \mathbb{R}^k and \mathbb{R} are of the same cardinality.
- 4. Is it true that the cardinality of the set of all lines of the plane is continuum?

5. Prove that the set of infinite zero-one sequences has the same cardinality as infinite sequences with elements from the set **a**) $\{0, 1, 2, 3\}$ **b**) $\{0, 1, 2\}$ **c**) \mathbb{N} .

6. Some one (may be with unlimited time and powers) has drown curves of shape 8 on a plane without intersections. Prove that the set of drown curves is countable.

7. Prove that the set of infinite sequences of real numbers has the same cardinality as \mathbb{R} .

8. Are the following sets of sequences $b_0, b_1, \ldots, b_n, \ldots$ countable?

a) zero-one sequences such that each continues subsequence of even length $b_i, b_{i+1}, \ldots, b_{i+2k-1}$ contains equal number of zeroes and ones

b) zero-one sequences such that each continues subsequence of odd length $b_i, b_{i+1}, \ldots, b_{i+2k}$ has almost equal number of zeroes and ones (difference between the greatest and the smallest number is at most one)?

9. Construct a bijection between a disc with border and disc without border.

Discrete Mathematics

Home Assignment 14

1. Let A be a point on a plane. Is it true that the set of (all) circles with center in A has cardinality continuum?

2. Prove that the set of intervals (a, b) on a line has cardinality continuum.

3. Let A be a set of (all) infinite sequences $a_0, a_1, \ldots, a_n, \ldots$ with elements 0, 1 or 2, such that $a_i \neq a_{i+1}$ for all *i*. Is it true, that the cardinality of A is continuum?

4. Prove that the cardinality of the set of bijections $\mathbb{N} \to \mathbb{N}$ is continuum.

5. Some one (may be with unlimited time and powers) has drown on a plane figures of shape 1 (like on the picture) that do not intersect. Could the set of drown figures have cardinality continuum?

6. A cross is a figure consisting of diagonals of a square (see the picture). Some one (may be with unlimited time and powers) has drown on a plane crosses that do not intersect. Could the set of drown crosses have cardinality continuum?

XX++