Discrete Mathematics

Seminar 18. Boolean circuits. Functional completeness

1. Describe a boolean function defined by the boolean circuit (on the picture)

Zhegalkin polynomial is a formula of a form

$$\bigoplus_{S \subseteq \{1,\dots,n\}} a_S \bigwedge_{i \in S} x_i, \qquad a_S \in \{0,1\},$$

The boolean values a_S are the coefficients of the Zhegalkin polynomial.

2. Is it true that any boolean function can be represented by Zhegalkin polynomial?

3. Do there exist a boolean function f on two variables such that the boolean circuit with gates $\{\wedge, f\}$

$$x_1, x_2, s_1 := f(x_1, x_2); s_2 := f(x_2, x_1); s_3 := s_1 \land s_2$$

computes a) function x_1 ? b) function $x_1 \oplus x_2$?

4. Verify whether the sets of logic connectivities are functional complete

- a) $\{\neg, \rightarrow\}$
- **b)** $\{\land,\lor,\backslash\}$, where $x \setminus y$ equals to $x \land \neg y$?
- **c**) {1,⊕}
- **d**) $\{\neg; \equiv\}$, where $x \equiv y$ equals to $(x \to y) \land (y \to x)$?

5. Majority is a boolean function $MAJ(x_1, x_2, ..., x_n)$ that returns the most frequent value among $x_1, ..., x_n$. Assume that if the numbers of zeroes and ones are the same then Majority returns 0. Circuits with gates $\{\vee, \wedge, 1, 0\}$ are called monotone circuits. Is MAJ computable via monotone circuits?

6. A boolean function $f(x_1, \ldots, x_n)$ is self-dual if for all values a_1, \ldots, a_n the following equality holds

$$f(a_1,\ldots,a_n) = \neg f(\neg a_1,\ldots,\neg a_n).$$

a) Are the functions $x_1 \vee x_2$, $x_1 \wedge x_2$ self-dual?

b) Prove that circuits that have all self-dual gates compute self-dual functions.

7. Prove that any boolean circuit of size s with n variables can be converted to a boolean circuit in which all negations apply only to variables, and at the same time the size of the new scheme does not exceed p(s, n), where p is a fixed polynomial.

Discrete Mathematics

Home Assignment 18

1. Can you compute a zero-function $(f(x_1, \ldots, x_n) = 0$ for all values of x_i s) via circuits with gates $\neg(x_1 \rightarrow x_2)$? 2. Construct a circuit with gates $\{1, \land, x_1 \oplus x_2\}$ (Zhegalkin basis) that computes the function MAJ(x, y, z). (See the definition of MAJ on the previous page.)

3. The function f is computable by the following circuit with gates $\{\neg MAJ(x_1, x_2, x_3), MAJ(x_1, x_2, x_3)\}$:

 $x_1, x_2, x_3, s_1 := MAJ(x_1, x_2, x_3); s_2 := \neg MAJ(x_1, x_2, x_3); s_3 := \neg MAJ(s_1, s_2, s_1).$

Construct a circuit with smaller number of assignments that computes f (simplify the given circuit).

4. Prove that the set of logical connectivities consisting of the only function $x \mid y = \neg(x \land y)$ is functionally complete. This function is known as NAND.

5. Is the set $\{\lor; \rightarrow\}$ functionally complete?

6. Is the set $\{\neg, MAJ(x_1, x_2, x_3)\}$ functionally complete?

7. Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if for all pairs $(x_1,\ldots,x_n), (y_1,\ldots,y_n) \in \{0,1\}^n$ the condition $\forall i \ x_i \leq y_i$ implies $f(x_1,\ldots,x_n) \leq f(y_1,\ldots,y_n)$.

Let $f(x_1, \ldots, x_n)$ be a non-monotone function. Prove that the negation function $(\neg x_i)$ is computable by a circuit over the basis $\{0, 1, f\}$.

8. Prove that a monotone function is computable by a monotone circuit (see the definition on the previous page.)