
Discrete Mathematics DSBA

Seminar 19. Boolean circuits II. Circuits, Algorithms and Complexity

If the basis is not described in the problem’s statement, then you shall use the common basis {¬,∧,∨}.
If a graph is mentioned in the problem, it is assumed that the circuit has

(
n
2

)
inputs, each of them corresponds

to an edge (if one is on the input then there is the edge in the graph).

1. Construct a polynomial circuit that computes MAJ(x1, x2, . . . , xn). (Recall that Majority is a boolean
function MAJ(x1, x2, . . . , xn) that returns the most frequent value among x1, . . . , xn. Assume that if the
numbers of zeroes and ones are the same then Majority returns 0.)

2. A boolean function L(x1, . . . , xn; y1, . . . , yn) computes which binary number on the input is greater.
Formally, it returns 1 if and only if (x1, . . . , xn)2 < (y1, . . . , yn)2. Construct a boolean circuit of size O(n)
that computes L(x1, . . . , xn; y1, . . . , yn).

3. a) Construct a polynomial boolean circuit that “sorts” bits on the input. Formally if the input is
(x1, x2, . . . , xn) and exactly k variables are assigned to 1 then on the output (y1, . . . , yn) first k bits are
equal to 1 and all the rest are equal to zero. b) Construct the circuit with gates {∧,∨}.
4. Prove that each boolean function f : {0, 1}n → {0, 1} is computable by a circuit of size O(2n). (Upgrade
a DNF construction or design a recursive construction).

5. Construct a polynomial circuit for the function f : {0, 1}(
n
2) → {0, 1} that equals one if and only if the

input graph is connected and contains the Eulerian cycle.

6. Let n = k + 2k. Pointer function f(x1, . . . , xk, y0, . . . , y2k−1) equals yx, where x is a number with binary
representation x1 . . . xk. Construct a polynomial scheme for the pointer function.

7. Prove that you can arbitrary define a boolean function f(x1, x2, . . . , x2n) on all the tuples (a1, a2, . . . , a2n)
with exactly n zeroes and after that you can define it on the rest tuples so that f would be a monotone
boolean function.

Recall that boolean function f : {0, 1}n → {0, 1} is monotone if for all pairs (x1, . . . , xn), (y1, . . . , yn) ∈ {0, 1}n
the condition ∀i xi 6 yi implies f(x1, . . . , xn) 6 f(y1, . . . , yn).

8. Prove that for all sufficiently large n there exists a monotone Boolean function f : {0, 1}n → {0, 1}, that
is not computable by any circuit of size less than n100.
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If the basis is not described in the problem’s statement, then you shall use the common basis {¬,∧,∨}.

1. Construct a polynomial circuit that verifies whether an n-bit binary number on the input is divisible by 3.

2. A triangle in a graph is a triple of vertices connected to each other. Consider the input of a function T : {0, 1}(
n
2) →

{0, 1} as an undirected graph on n vertices and put T (G) = 1 if and only if G has no triangles. Construct a
polynomial circuit that computes the function T .

3. Construct a polynomial circuit for the function f : {0, 1}(
n
2) → {0, 1}, that returns 1 if and only if the

input graph is two-colorable.

4. A Boolean function W (u1, . . . , u`;x1, . . . , xn) returns 1 if and only if the binary word u1u2 . . . u` is a
subword of the binary word x1x2 . . . xn i.e. for some 0 6 k 6 n− ` the equalities xk+i = ui hold. Construct
a polynomial circuit circuit that computes W .

5. A boolean function f : {0, 1}n → {0, 1} is symmetric if it’s value does not depend on the permutation of
its input bits. For example f(1, 0, 1, 0) = f(1, 1, 0, 0) = f(1, 0, 0, 1) for a symmetric f(x1, x2, x3, x4). Prove
that any symmetric boolean function is computable by a polynomial circuit.

6. Prove that each boolean function f : {0, 1}n → {0, 1} is computable by a circuit with gates {⊕,∧, 1} of
size of at most 2n+1.

7. Construct a polynomial boolean circuit with gates {∧,∨} that computes MAJ(x1, . . . , xn).


