Discrete Mathematics

Seminar 19. Boolean circuits II. Circuits, Algorithms and Complexity

If the basis is not described in the problem's statement, then you shall use the common basis $\{\neg, \wedge, \vee\}$. If a graph is mentioned in the problem, it is assumed that the circuit has $\binom{n}{2}$ inputs, each of them corresponds to an edge (if one is on the input then there is the edge in the graph).

1. Construct a polynomial circuit that computes $\operatorname{MAJ}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. (Recall that Majority is a boolean function $\operatorname{MAJ}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that returns the most frequent value among x_{1}, \ldots, x_{n}. Assume that if the numbers of zeroes and ones are the same then Majority returns 0 .)
2. A boolean function $L\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ computes which binary number on the input is greater. Formally, it returns 1 if and only if $\left(\overline{x_{1}, \ldots, x_{n}}\right)_{2}<\left(\overline{y_{1}, \ldots, y_{n}}\right)_{2}$. Construct a boolean circuit of size $O(n)$ that computes $L\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$.
3. a) Construct a polynomial boolean circuit that "sorts" bits on the input. Formally if the input is $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and exactly k variables are assigned to 1 then on the output (y_{1}, \ldots, y_{n}) first k bits are equal to 1 and all the rest are equal to zero. b) Construct the circuit with gates $\{\wedge, \vee\}$.
4. Prove that each boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is computable by a circuit of size $O\left(2^{n}\right)$. (Upgrade a DNF construction or design a recursive construction).
5. Construct a polynomial circuit for the function $f:\{0,1\}\binom{n}{2} \rightarrow\{0,1\}$ that equals one if and only if the input graph is connected and contains the Eulerian cycle.
6. Let $n=k+2^{k}$. Pointer function $f\left(x_{1}, \ldots, x_{k}, y_{0}, \ldots, y_{2^{k}-1}\right)$ equals y_{x}, where x is a number with binary representation $x_{1} \ldots x_{k}$. Construct a polynomial scheme for the pointer function.
7. Prove that you can arbitrary define a boolean function $f\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)$ on all the tuples ($a_{1}, a_{2}, \ldots, a_{2 n}$) with exactly n zeroes and after that you can define it on the rest tuples so that f would be a monotone boolean function.
Recall that boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if for all pairs $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$ the condition $\forall i x_{i} \leqslant y_{i}$ implies $f\left(x_{1}, \ldots, x_{n}\right) \leqslant f\left(y_{1}, \ldots, y_{n}\right)$.
8. Prove that for all sufficiently large n there exists a monotone Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, that is not computable by any circuit of size less than n^{100}.

Discrete Mathematics

Home Assignment 19

If the basis is not described in the problem's statement, then you shall use the common basis $\{\neg, \wedge, \vee\}$.

1. Construct a polynomial circuit that verifies whether an n-bit binary number on the input is divisible by 3 .
2. A triangle in a graph is a triple of vertices connected to each other. Consider the input of a function $T:\{0,1\}\binom{n}{2} \rightarrow$ $\{0,1\}$ as an undirected graph on n vertices and put $T(G)=1$ if and only if G has no triangles. Construct a polynomial circuit that computes the function T.
3. Construct a polynomial circuit for the function $f:\{0,1\}\binom{n}{2} \rightarrow\{0,1\}$, that returns 1 if and only if the input graph is two-colorable.
4. A Boolean function $W\left(u_{1}, \ldots, u_{\ell} ; x_{1}, \ldots, x_{n}\right)$ returns 1 if and only if the binary word $u_{1} u_{2} \ldots u_{\ell}$ is a subword of the binary word $x_{1} x_{2} \ldots x_{n}$ i.e. for some $0 \leqslant k \leqslant n-\ell$ the equalities $x_{k+i}=u_{i}$ hold. Construct a polynomial circuit circuit that computes W.
5. A boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is symmetric if it's value does not depend on the permutation of its input bits. For example $f(1,0,1,0)=f(1,1,0,0)=f(1,0,0,1)$ for a symmetric $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Prove that any symmetric boolean function is computable by a polynomial circuit.
6. Prove that each boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is computable by a circuit with gates $\{\oplus, \wedge, 1\}$ of size of at most 2^{n+1}.
7. Construct a polynomial boolean circuit with gates $\{\wedge, \vee\}$ that computes $\operatorname{MAJ}\left(x_{1}, \ldots, x_{n}\right)$.
