Discrete Mathematics

Zero Variant of the Spring Exam

Preambula. Recall that answers without arguments are not considered as solutions. You shall use convincing arguments so, that your solution becomes close to a mathematical proof.

1. Find the maximum possible number of edges in a directed acyclic graph on n vertices. (Recall that there are no parallel edges.)

2. An undirected graph-path consists of vertices v_0, v_1, \ldots, v_4 (each subsequent vertices are adjacent). The vertices are uniformly randomly painted in 4 colors. Find the probability of that each pair of vertices (v_i, v_j) such that the distance between v_i and v_j is 1 or 2 is painted in different colors.

3. Find $gcd(\underline{11...11}, \underline{11...11})$. (Numbers written in decimal representation.)

120 times 84 times

4. Someone has chosen $2^{n-1}+1$ subsets of an *n*-element set. Prove that there are two non-intersecting subsets among the chosen subsets.

5. A boolean function $U_2(x_1, \ldots, x_n)$ equals one if and only if among the input bits x_1, \ldots, x_n there are exactly two ones. Construct a circuit of size O(n) that computes U_2 .

6. Let X and Y be finite sets and $f, g: X \to Y$ are totally defined functions. It is known that f is an injection and g is a surjection. Does it imply that for each subset $A \subseteq X$ the assertion $|g^{-1}(f(A))| \ge |A|$ holds? If you answer is true, provide the proof and otherwise provide a counterexample (f, g and A for which the assertion doesn't hold).

7. There are 6 black and 6 white pearls of the same form. A jeweller creates a random necklace by putting them on the thread in (uniformly) random order and after that the ends of the thread are tied and all the pearls are arranged in a circle. Find the expectation of black pearls that have both white neighbors.

8. A set \mathbb{R} of real numbers is splited into two subsets A and B, i.e. $A \cup B = \mathbb{R}$, $A \cap B = \emptyset$. Prove that at least one of the subsets A or B has cardinality continuum.