1. The number of paths on coordinate plane from $(0,0)$ to (i, j) by moves up and right is $\binom{i+j}{i}$.
2. Pascal triangle and it's properties

- symmetry
- binomial coefficients increase from the left to center (and from the right to center)
- lower bound for the central coefficient: $\binom{2 n}{n}>\frac{2^{2 n}}{n+1}$.

3. Binomial theorem and binomial coefficients

- recursive formula

$$
\begin{equation*}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \tag{1}
\end{equation*}
$$

- sum of binomial coefficients (in one row) and its combinatorial meaning
- sign-alternating sum ${ }^{1}$ of binomial coefficients

4. Combinatorial proofs

- Prove of the recursive formula (1) via paths on the coordinate plane
- a problem about a group of students with the leader: $n \times 2^{n-1}=\sum_{k=1}^{n} k\binom{n}{k}$;
- $\sum_{k=1}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} ;$

5. Fibonacci numbers. Example of cuts of a celled strip $2 \times n$

References

The books are listed on the wiki-page.
[1]: Chapter 3 (except 3.4 that would be on the next lecture)
[4]: Sections 2.7, 2.8 (except 2.8.7 that would be on the next lecture) and 2.9 (only the beginning)

Keywords

- Binomial coefficients
- Pascal triangle
- Binomial theorem
- Combinatorial proofs
- Permutations
- Recursive formula (recurrence relation)
- Fibonacci number

[^0]
[^0]: ${ }^{1}$ adding and subtracting binomial coefficients alternatingly

