Неделя 20. Эффективные схемы и разрешающие деревья

Если в условии задачи базис не указан, то нужно использовать схемы в стандартном базисе $\{\neg, \land, \lor\}$.

- 1. Постройте ДНФ и КНФ разложения для булевой функции, заданной вектором значений 10100110.
- **2.** Постройте схему полиномиального размера для функции $MAJ(x_1, \ldots, x_n)$. (Напомним, что эта функции равна 1 тогда и только тогда, когда больше половины её аргументов равны 1.)
- **3.** Булева функция сравнения $L(x_1, \ldots, x_n; y_1, \ldots, y_n)$ равна 1 тогда и только тогда, когда $(\overline{x_1, \ldots, x_n})_2 < (\overline{y_1, \ldots, y_n})_2$. Постройте схему размера O(n), которая вычисляет $L(x_1, \ldots, x_n; y_1, \ldots, y_n)$.
- **4. а)** Постройте схему полиномиального размера, которая «сортирует» биты на входе: если на входе $(x_1, x_2, ..., x_n)$ какие-то k переменных принимают значение 1, то на выходе $(y_1, ..., y_n)$ первые k переменных равны 1, а остальные нули. **б)** Постройте описанную схему в базисе $\{\land, \lor\}$.
- **5.** Среди n камней есть один радиоактивный. Счётчиком Гейгера мы можем проверить для любой кучки камней, если ли среди них радиоактивный. За какое наименьшее количество проверок можно найти радиоактивный камень?
- **6.** В клетках шахматной доски написали в каком-то порядке числа от 1 до 64, каждое по одному разу. Про любое множество клеток доски мы можем спросить, какие числа на них стоят, и нам выдают полный список. За какое наименьшее количество вопросов можно понять, где какие числа стоят?
- 7. Вычисление булевой функции $f: \{0,1\}^n \to \{0,1\}$ в модели разрешающих деревьев происходит следующим образом: за один вопрос разрешается спросить значение одной из переменных, в конце нужно объявить значение функции. Сложность вычисления функции наименьшее количество вопросов в адаптивном (вопрос может зависеть от предыдущих ответов) протоколе, вычисляющем функцию.
- а) Найдите сложность вычисления суммы по модулю два $\bigoplus_i x_i$ в модели разрешающих деревьев.
- **б)** Пусть $n=k+2^k$. Указательная функция $f(x_1,\ldots,x_k,y_0,\ldots,y_{2^k-1})$ равна y_x , где x число, двоичная запись которого $x_1\ldots x_k$. Докажите, что сложность вычисления f в модели разрешающих деревьев не превосходит k+1.
- в) Докажите, что сложность вычисления функции f из предыдущего пункта не меньше k+1.
- 8. Постройте схему полиномиального размера для указательной функции.
- **9.** Докажите, что всякую функцию $f\colon\{0,1\}^n \to \{0,1\}$ можно вычислить булевой схемой размера
- a) $O(n2^n)$; 6) $O(2^n)$.