Дискретная математика. Основной поток

Промежуточный экзамен, 22.12.18

Время экзамена: 2 часа 40 минут. Все ответы и утверждения должны быть строго обоснованы. При использовании утверждений из курса их необходимо указывать явно.

- **1.** Найдите коэффициент при одночление $wx^5y^3z^2$ в разложении $(7w-2x+3y-z)^{11}$ (ответ можно не упрощать).
- **2.** Пусть всюдуопределенная функция $f: X \to Y$ является сюрьекцией и $A, B \subseteq X$. Верно ли, что $f(A \setminus B) = f(A) \setminus f(B)$?
- **3.** Про непустые попарно несовпадающие множества A, B и C известно, что $C \setminus A \subseteq B$ и $C \setminus B \subseteq A$. Возможно ли, что $B = A \cap C$?
- **4.** Булева функция $f(x_1, x_2, \dots, x_n)$ называется линейной, если её можно задать формулой

$$a_0 \oplus (a_1 \wedge x_1) \oplus (a_2 \wedge x_2) \oplus \ldots \oplus (a_n \wedge x_n),$$

в которой $a_i \in \{0,1\}$ — коэффициенты линейной функции. Выразите с помощью коэффициентов линейной функции **a)** число её фиктивных переменных; **б)** число единиц в её векторе значений.

5. Обозначим через P(n,k) число способов распределить n студентов по k группам (каждый студент входит ровно в одну группу) без учёта номеров групп. То есть, два распределения, в которых группы отличаются только номерами, считаются одинаковыми. Докажите, что выполняется следующая рекуррентная формула:

$$P(n,k) = P(n-1,k-1) + kP(n-1,k).$$

6. Пусть R — бинарное отношение на конечном множестве A. Определим бесконечную последовательность бинарных отношений:

$$R_0 = R$$
, $R_1 = R_0 \circ R = R \circ R$, $R_2 = R_1 \circ R$, $R_3 = R_2 \circ R$, ..., $R_n = R_{n-1} \circ R$, ...

Верно ли, что (для произвольного R) начиная с некоторого n выполняется $R_n = R_{n+1}$?

- **7.** Докажите, что если $m \geq 2$ —минимальная степень вершины простого неориентированного графа G, то граф G содержит простой цикл длины не меньше m+1.
- 8. В ориентированном графе без петель на 16 вершинах каждая пара вершин соединена ровно одним ребром (направленным в ту или другую строну). Докажите, что найдётся такое множество S из 8 вершин, что количество рёбер с началом в S и концом вне S больше, чем количество рёбер с концом в S и началом вне S.

Группа			ФИО				
1	2	3	4	5	6	7	8